ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Research article
Optimization of nozzle structure of top-burning heating furnace: case study of Fushun retort heating for oil shale; pp. 115–131
PDF | https://doi.org/10.3176/oil.2024.2.03

Authors
Yue Yue, Zhu He, Chunhua Wang
Abstract

The purpose of this study is to introduce an air nozzle on top of a top-fired heating furnace designed for oil shale retorting, using numerical simulations to delineate enhanced gas flow, heat transfer, and combustion in the furnace. Traditional heating flow fields, temperatures, and nitric oxide (NO) emission behaviors were carefully studied alongside furnaces fitted with various top jet systems. Our findings conclude that the introduction of top air supply leads to the development of a stable vortex pair in the combustion chamber, enhancing flame stability. Moreover, the incorporation of the top jet structure noticeably enhances the combustion chamber’s temperature and homogeneity, retaining the benefits of swirl combustion, optimizing high-speed entrainment effects, promoting gas flow stratification, and substantially reducing NO production. With the implementation of the top air supply, NO emission is reduced to below 50 mg/Nm3, while peak incomplete combustion heat loss decreases to less than 1%, which successfully helps achieve the goal of improving thermal efficiency, saving energy, and reducing emissions from the heating furnace.

References

1. Liu, G., Sun, P., Ji, Y., Wan, Y., Wang, H., You, X. Current status and energy analysis of oil shale’s retorting process in the world. Petroleum Chemistry, 2021, 61(2), 123–138.
https://doi.org/10.1134/S0965544121020134

2. Ma, G. Effects of Fushun oil shale retorting operation factors optimization. MD thesis. Jilin University, China, 2012.

3. Xu, H., Zhao, Z., Bi, Z. Research on heating furnace technology of Fushun dry distillation technology. Heilongjiang Science and Technology Information, 2017, 1(40), 40.

4. Qi, F., Liu, Z., Yao, C., Li, B. Numerical study and structural optimization of a top combustion hot blast stove. Advances in Mechanical Engineering, 2015, 7(2), 709675. 
https://doi.org/10.1155/2014/709675

5. Gan, Y. F., Jang, J. Y., Wu, T. Y. 3D dynamic thermal and thermomechanical stress analysis of a hot blast stove. Ironmaking & Steelmaking, 2020, 47(9), 959–972.
https://doi.org/10.1080/03019233.2019.1647384

6. Zhao, M., Pan, Y., Meng, F., Ma, P., Jia, L., Ma, G., Meng, F., Li, D. CFD numerical simulation of operation optimization for energy saving during combustion period of Kalugin top combustion hot blast stove. Transactions of the Indian Institute of Metals, 2023, 76(7), 1967–1976. 
https://doi.org/10.1007/s12666-023-02903-7

7. Dai, F. Q., Huang, S. Y., Li, S. H., Liu, K. Study of a ceramic burner for shaftless stoves. International journal of minerals, metallurgy and materials, 2009, 16(2), 149–153.
https://doi.org/10.1016/S1674-4799(09)60025-X

8. Guo, H., Yan, B., Zhang, J., Liu, F., Pei, Y. Optimization of the number of burner nozzles in a hot blast stove by the way of simulation. JOM, 2014, 66(7), 1241–1252.
https://doi.org/10.1007/s11837-014-1022-z

9. Wang, B., Huang, S., Dai, F. Numerical simulations in ceramic burner model of top-firing hot-blast stove. Energy for Metallurgical Industry, 2007, 26(2), 24–27.

10. Peng, C. Numerical simulation of burners in Karugin top burning hot blast stove. MD thesis. Chongqing University, China, 2010.

11. Li, Y. Optimum Design of gas and combustion air nozzle structure of top-combustion hot air stove. MD thesis. Northeastern University, China, 2017.

12. Hao, X., Zhang, Z., Zhang, S., Bo, F. Research on combustion characteristics of top combustion hot blast stove by radial angle of nozzle. Industrial Heating, 2018, 47(1), 8–11, 16.

13. Zhang, Q., Chen, L., Zhao, C. Numerical simulation of combustion and air supply process and optimal design of traditional top combustion hot blast stoves. Steel Research International, 2020, 92(2). 
https://doi.org/10.1002/srin.202000311

14. Zhang, Q., Chen, L., Ma, X., Zhao, C. Numerical study of combustion and air supply characteristics and structural optimization of top combustion hot blast stoves. ISIJ International, 2021, 61(1), 62–70.
https://doi.org/10.2355/isijinternational.ISIJINT-2020-119

15. Wei, Q., Ge, L., Liu, S., Fu, Z., Liu, L. Technical points of high air temperature and low nitrogen oxide emission in hot blast stove. Ironmaking, 2021, 40(3), 46–49.

16. ANSYS, Inc. ANSYS FLUENT Theory Guide. Release 2023 R2, Canonsburg, 2023.

17. Tian, L. Research and optimization of temperature uniformity and process parameters of roller kiln. MD thesis. Guangdong University of Technology, China, 2020.

Back to Issue