ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Research article
Geochemical and thermal characterization and kinetics of oil shale samples from Çeltek, Türkiye; pp. 103–114
PDF | https://doi.org/10.3176/oil.2024.2.02

Author
Mustafa Verşan Kök
Abstract

This research delves into the geochemical aspects, non-isothermal thermogravimetric analysis, and model-free kinetics of oil shale samples from the Çeltek region in Amasya, Türkiye. Shifting the focus to the core of the research, thermal and mass spectrometric analysis (TG–DTG–MS) experiments were conducted in an air atmosphere, employing three distinct heating rates of 10, 20, and 30 °C/min. The outcomes revealed two successive reaction stages: the breakdown of organic matter and mineral decomposition. In the breakdown stage, activation energy values exhibited a range of 160–163 kJ/mol, while in the mineral decomposition stage, the values varied between 208–214 kJ/mol, using model-free kinetic models.

References

1. Oja, V., Suuberg, E. M. Oil shale processing, chemistry, and technology. In: Fossil Energy. Springer, New York, 2013, 99–148.
https://doi.org/10.1007/978-1-4614-5722-0_5

2. Şener, M., Şengüler, İ ., Kok, M. V. Geological considerations for the economic evaluation of oil shale deposits in Turkey. Fuel, 1995, 74(7), 999–1003. 
https://doi.org/10.1016/0016-2361(95)00045-7

3. Williams, P. T., Ahmad, N. Influence of process conditions on the pyrolysis of Pakistani oil shales. Fuel, 1999, 78(6), 653–662. 
https://doi.org/10.1016/S0016-2361(98)00190-2

4. Al-Harahsheh, M., Al-Ayed, O. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shale. Fuel Proc. Technol., 2001, 92(9), 1805–1811.
https://doi.org/10.1016/j.fuproc.2011.04.037

5. Kök, M. V., Pamir, M. R. Pyrolysis kinetics of oil shales determined by DSC and TG/DTG. Oil Shale, 2003, 20(1), 57–68. 
https://doi.org/10.3176/oil.2003.1.07

6. Kök, M. V., Pamir, M. R. Comparative pyrolysis and combustion kinetics of oil shales. J. Anal. Appl. Pyrol., 2000, 55(2), 185–194. 
https://doi.org/10.1016/S0165-2370(99)00096-0

7. Shawabkeh, A., Abdel Halim, K. S., Al-Ayed, O. 2016. Isoconversional methods for kinetic modeling of kerogen pyrolysis using TG data. Appl. Mech. Mater., 2016, 835, 299–307. 
https://doi.org/10.4028/www.scientific.net/AMM.835.299

8. Kök, M. V., Iscan, A. G. Oil shale kinetics by differential methods. J. Therm. Anal. Calorim., 2007, 88, 657–661.
https://doi.org/10.1007/s10973-006-8027-y

9. Kaljuvee, T., Keelmann, M., Trikkel, A., Kuusik, R. Thermo-oxidative decompo-sition of oil shales. J. Therm. Anal. Calorim., 2011, 105, 395–403.
https://doi.org/10.1007/s10973-010-1033-0

10. Kaljuvee, T., Pelt, J., Radin, M. TG-FTIR study of gaseous compounds evolved at thermooxidation of oil shale. J. Therm. Anal. Calorim., 2004, 78, 399–414.
https://doi.org/10.1023/B:JTAN.0000046106.53195.26

11. Li, S., Yue, C. Study of different kinetic models for oil shale pyrolysis. Fuel Proc. Technol., 2004, 85(1), 51–61. 
https://doi.org/10.1016/S0378-3820(03)00097-3

12. Li, S., Yue, C. Study of pyrolysis kinetics of oil shale. Fuel, 2003, 82(3), 337–342. 
https://doi.org/10.1016/S0016-2361(02)00268-5

13. Gorur, N., Tuysuz, O. Cretaceous to Miocene palaeographic evolution of Turkey: implications for hydrocarbon potential. J. Petrol. Geol., 2007, 24(2), 119–146.
https://doi.org/10.1111/j.1747-5457.2001.tb00664.x

14. Görür, N., Oktay, F. Y., Seymen, I., Şengör, A. M. C. Palaeotectonic evolution of the Tuzgölü basin complex, central Turkey: sedimentary record of a Neo-Tethyan closure. Geological Society, 1984, 17, 467–482.
https://doi.org/10.1144/GSL.SP.1984.017.01.34

15. Şener, M., Şengüler, İ. Geological, mineralogical, and geochemical characteristics of oil shale bearing deposits in the Hatıldağ oil shale field, Göynük, Turkey. Fuel, 1998, 77(8), 871–880.
https://doi.org/10.1016/S0016-2361(97)00253-6

16. Hutton, A. C. Petrographic classification of oil shales. Int. J. Coal Geol., 1987, 8(3), 203–231.
https://doi.org/10.1016/0166-5162(87)90032-2

17. Yıldırım, A., Şengüler, İ., Cihan, O. C., Hoşhan, P., Öner, A. The organic and inorganic inventory and hydrocarbon potential of Türkiye oil shales. Report No. 3864. Turkish Petroleum Corporation (TPAO) Research Center, 2014.

18. Peters, K. E. Guidelines for evaluating petroleum source rocks using programmed pyrolysis. AAPG Bull., 1986, 70, 318–329. 
https://doi.org/10.1306/94885688-1704-11D7-8645000102C1865D

19. Abarghani, A., Ostadhassan, M., Gentzis, T., Carvajal-Ortiz, H., Bubach, B. Organo—facies study of the Bakken source rock in North Dakota, USA, based on organic petrology and geochemistry. Int. J. Coal Geol., 2018, 188, 79–93.
https://doi.org/10.1016/j.coal.2018.02.004

20. Abarghani, A., Ostadhassan, M., Gentzis, T., Carvajal-Ortiz, H., Bubach, B. Correlating Rock-Eval™ Tmax with bitumen reflectance from organic petrology in the Bakken Formation. Int. J. Coal Geol., 2019, 205, 87–104.
https://doi.org/10.1016/j.coal.2019.03.003

21. Xiang-guo, L., Bao-guo, M., Li, X., Zhen-wu, H., Xin-gang, W. Thermo-gravi-metric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim. Acta, 2006, 441(1), 79–83.
https://doi.org/10.1016/j.tca.2005.11.044

22. Li, Q., Zhao, C., Chen, X., Wu, W., Li, Y. Comparison of pulverized coal combustion in air and in O2/COmixtures by thermo-gravimetric analysis. J. Anal. Appl. Pyrol., 2009, 85(1–2), 521–528. 
https://doi.org/10.1016/j.jaap.2008.10.018

23. Qing, W., Chunxia, J., Qianqian, J., Yin, W., Wu, D. Combustion characteristics of Indonesian oil sands. Fuel Proc. Technol., 2012, 99, 110–114. 
https://doi.org/10.1016/j.fuproc.2012.02.006

24. Tiwari, P., Deo, M. Compositional and kinetic analysis of oil shale pyrolysis using TGA–MS. Fuel, 2012, 94, 333–341. 
https://doi.org/10.1016/j.fuel.2011.09.018

25. Thakur, D. S., Nuttall Jr., H. E. Kinetics of pyrolysis of Moroccan oil shale by thermogravimetry. Ind. Eng. Chem. Res., 1987, 26(7), 1351–1356.
https://doi.org/10.1021/ie00067a015

26. Kissinger, H. E. Reaction kinetics in differential thermal analysis. Anal. Chem., 1957, 29(11), 1702–1706. 
https://doi.org/10.1021/ac60131a045

27. Vyazovkin, S. Model-free kinetics. J. Therm. Anal. Calorim., 2006, 83, 45–51. 
https://doi.org/10.1007/s10973-005-7044-6

28. Al-Ayed, O. S., Matouq, M., Anbar, Z., Khaleel, A. M., Abu-Nameh, E. Oil shale pyrolysis kinetics and variable activation energy principle. Applied Energy, 2010, 87(4), 1269–1272.
https://doi.org/10.1016/j.apenergy.2009.06.020

29. Syed, S., Qudaih, R., Talab, I., Janajreh, I. Kinetics of pyrolysis and combustion of oil shale sample from thermogravimetric data. Fuel, 2011,90(4), 1631–1637.
https://doi.org/10.1016/j.fuel.2010.10.033

30. Torrente, M. C., Galán, M. A. Kinetics of the thermal decomposition of oil shale from Puertollano (Spain). Fuel, 2001, 80(3), 327–334. 
https://doi.org/10.1016/S0016-2361(00)00101-0

31. Aboulkas, A., El Harfi, K., Nadifiyine, M., Benchanaa, M. Pyrolysis behaviour and kinetics of Moroccan oil shale with polystyrene. J. Petr. Gas Eng., 20112(6), 108–117.

32. Foltin, J. P., Prado, G. N., Lisbôa, A. C. L. Analysis of kinetics parameter of oil shale pyrolysis. Chem. Eng. Trans., 2017, 61, 439–444.

33. Hua, Z., Wang, Q., Jia, C., Liu, Q. Pyrolysis kinetics of a Wangqing oil shale using thermogravimetric analysis. Energy Sci. Eng., 20197(3), 912–920.
https://doi.org/10.1002/ese3.320

Back to Issue