ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
KINETIC ANALYSIS OF CO-COMBUSTION OF OIL SHALE SEMI-COKE WITH BITUMINOUS COAL; pp. 63–75
PDF | doi: 10.3176/oil.2012.1.06

Authors
B.-Z. SUN, Q. WANG, P.-Y. SHEN, H. QIN, S.-H. LI
Abstract

Utilization of the semi-coke collected from oil shale retorts is very important and advantageous. Due to the inflammable property, co-combustion of semi-coke with other good quality solid fuels could be effectual. In this research, a kinetic study of the combustion of oil shale semi-coke (SC) mixed with bituminous coal (C) was carried out by thermogravimetric analysis at different heating rates. Popescu's method was applied to analyze the kinetic mechanisms of combustion of oil shale semi-coke, bituminous coal and their blends; Flynn-Wall-Ozawa method was employed to determine the activation energies of those combustion reactions. Based on the obtained results, it was concluded that three-dimensional diffusion model could be implemented either for the combustion process of oil shale semi-coke or for bituminous coal while for their blends the model of random nucleation and growth could be applied. The activation energies of oil shale semi-coke and the blends of semi-coke and bituminous coal decreased in the beginning, and then increased during the combustion process. Activation energies of the blends decreased with increasing amount of bituminous coal.

References

  1.  Qian, J. L., Wang, J. Q. Current status of world oil shale development //
J. China Foreign Energy. 2007. Vol. 12, No. 1. P. 7–11 [in Chinese].

  2. Qian, J. L., Yin, L. Oil Shale-Supplemental Energy of Petroleum[M]//Beijing: China Petrochemical Press, 2008 [in Chinese].

  3. Mõtlep, R., Kirsimäe, K., Talviste, P., Puura, E, Jürgenson, J. Mineral composi­tion of Estonian oil shale semi-coke sediments // Oil Shale. 2007. Vol. 24, No. 3. P. 405–422.

  4. Wang, Q., Bai, J. R., Sun, B. Z., Sun, J. Strategy of Huadian oil shale com­prehensive utilization // Oil Shale. 2005. Vol. 22, No. 3. P. 305–315.

  5. Wang, Q., Wang, H. G., Sun, B. Z., Bai, J. R., Guan, X. H. Interactions between oil shale and its semi-coke during co-combustion // Fuel. 2009. Vol. 88, No. 8. P. 1520–1529.

  6. Zhou, J. H., Ping, C. J., Yang, W. J. Thermogravimetric research on dynamic combustion reaction parameters of blended coals // Chinese Journal of Power Engineering. 2005. Vol. 25, No. 2. P. 207–210 [in Chinese].

  7. Belén Folgueras, M., Diaz, R. M., Xiberta, J., Pricto, I. Thermogravimetric analysis of the co-combustion of coal and sewage sludge // Fuel. 2003. Vol. 82, No. 15–17. P. 2051–2055.

  8. Sun, B. Z., Wang, Q., Li, S. H. Experiment study on combustion performance of oil shale and semi-coke blends // Proceedings of the CSEE. 2006. Vol. 26, No. 20. P. 108–112 [in Chinese].

  9. Aboulkas, A., El harfi, K., Nadifiyine, M., El bouadili, A. Investigation on pyro­lysis of Moroccan oil shale/plastic mixtures by thermogravimetric analysis // Fuel Process. Technol. 2008. Vol. 89, No. 11. P. 1000–1006.
http://dx.doi.org/10.1016/j.fuproc.2008.03.011

10. Otero, M., Calvo, L. F., Gil, M. V., Garcia, A. I., Morán, A. Co-combustion of different sewage sludge and coal: A non-isothermal thermogravimetric kinetic analysis // Bioresource Technol. 2008. Vol. 99, No. 14. P. 6311–6319.
http://dx.doi.org/10.1016/j.biortech.2007.12.011

11. Popescu, C. Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions: A variant on the Ozawa-Flynn-Wall method // Thermochim. Acta. 1996. Vol. 285, No. 2. P. 309–323.
http://dx.doi.org/10.1016/0040-6031(96)02916-4

12. Olivella, M. À., De Las Heras, F. X. C. Evaluation of linear kinetic methods from pyrolysis data of spanish oil shales // Oil Shale. 2008. Vol. 25, No. 2. P. 227–245.

13. Kok, M. V. Geological considerations for the economic evaluation of Turkish oil shale deposits and their combustion-pyrolysis behavior // Energy Source. 2009. Vol. 32, No. 4. P. 323–335.

14. Aboulkas, A., E harfi, K., El bouadili, A. Kinetic and mechanism of Tarfaya (Morocco) oil shale and LDPE mixture pyrolysis // J. Mater. Process. Tech. 2008. Vol. 206, No. 1–3. P. 16–24.
http://dx.doi.org/10.1016/j.jmatprotec.2007.11.282

15. Zhang,  B. S., Liu, J. Z., Zhou, J. H. Popescu method for combustion kinetic mechanisms of coals // Proceedings of the CSEE. 2006. Vol. 26, No. 15. P. 68–72 [in Chinese].

16. Hu, R. Z., Shi, Q. Z. Thermal Analysis Kinetics[M]//Beijing: Science Press, 2000 [in Chinese].

17. Zhang, B. S., Liu, J. Z., Zhou, J. H. New model-free method based approach to mechanism of limestone decomposition // Journal of Chemical Industry and Engineering (China). 2007. Vol. 58, No. 5. P. 1204–1209 [in Chinese].

18. Yağmur, S., Durusoy, T. Kinetics of the pyrolysis and combustion of Göynük oil shale // J. Thermal Anal. Calorim. 2006. Vol. 86, No. 2. P.479–482.
http://dx.doi.org/10.1007/s10973-005-7312-5

Back to Issue