ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
LOW-TEMPERATURE PYROLYSIS AND CO-PYROLYSIS OF GÖYNÜK OIL SHALE AND TEREBINTH BERRIES (TURKEY) IN AN AUTOCLAVE; pp. 469–486
PDF | doi: 10.3176/oil.2011.4.02

Authors
J. Yanik, P. SEÇIM, S. KARAKAYA, L. TIIKMA, H. LUIK, J. KRASULINA, P. RAIK, Vilja Palu
Abstract

Low-temperature pyrolysis of Turkish Göynük oil shale (GOS) and terebinth berries as individual objects and their dry and hydrous co-pyrolysis in a closed system, in an autoclave was studied. The effect of pyrolysis conditions (temperature and duration) on the yield of extracts (hexane and benzene), gas and organic residue was investigated.
   The composition of extracts was determined via thin layer chromatography. The yield of the extracts increased with the increase of pyrolysis temperature and duration, and its maximum attained 48.5% from the initial organic matter for GOS and 40% for berries. On the other hand, supercritical water also affected product yields and composition of extracts derived from both GOS and terebinth berries. The total yields of extracts from hydrous pyrolysis were 57.3% and 60.0% for GOS and berries, respectively. How­ever, the extracts of hydrous pyrolysis contained more polar hetero­compounds and less nonaromatic hydrocarbons than those of dry pyrolysis.
   Addition of berries to GOS lowered the co-pyrolysis temperature about 10 °C for reaching the maximum yield of the total extract. Dry co-pyrolysis of GOS with berries resulted in additive rather than in synergistic effect in the total extract yield, but the composition of the extract as a fuel – more nonaromatic hydrocarbons (33.8%) and less heterocompounds (43.0%) than that of extracts from individual feedstocks – was improved. Similarly, in the case of hydrous co-pyrolysis, the yields of extracts (hexane and benzene), gas and organic residue consisted of partial contributions of the yields from the initial feedstocks.

References

  1. Vanderbroucke, M., Largeau C. Kerogen origin, evolution and structure // Org. Geochem. 2007. Vol. 38, No. 5. P. 79–833.

  2. Johannes, I., Zaidentsal, A. Kinetics of low-temperature retorting of Kukersite // Oil Shale. 2008. Vol. 25, No. 4. P. 412-425.

  3. Johannes, I., Tiikma, L. Thermobituminization of Baltic oil shale // Advances in Energy Research. Vol. 2. Chapter 9. / Morena J. Acosta (Ed.). – Nova Science Publishers, Inc. ISBN: 978-1-61728-996-5. 2011. P. 267–282.

  4. Johannes, I., Tiikma, L. Kinetics of oil shale pyrolysis in an autoclave under non-linear increase of temperature // Oil Shale. 2004. Vol. 21, No. 4. P. 273–288.

  5. Sokolova, J., Tiikma, L., Bityukov, M., Johannes, I. Ageing of kukersite thermo­bitumen // Oil Shale. 2011. Vol. 28, No. 1. P. 4–18.

  6. Kok, M. V. Geological considerations for the economic evaluation of Turkish oil shale deposits and their combustion-pyrolysis behavior // Energ. Source, Part A. 2009. Vol. 32, No. 4. P. 323–335.

  7. Putun, E., Akar, A., Ekinci, E., Bartle, K-D. Chemistry and geochemistry of Turkish oil shale kerogens // Fuel. 1988. Vol. 67, No. 8. P. 1106–1110.

  8. Ballice, L., Yüksel, M., Sağlam, M., Schulz, H. Evolution of volatile products from Göynük (Turkey) oil shales by temperature-programmed pyrolysis // Fuel. 1997. Vol. 76, No. 5. P. 375–380.

  9. Kök, M. V., Pokol, G., Keskin, C., Madarász, J., Bagci, S. Combustion cha­racteristics of lignite and oil shale samples by thermal analysis techniques // J. Therm. Anal. Calorim. 2004. Vol. 76, No. 1. P. 247–254.
http://dx.doi.org/10.1023/B:JTAN.0000027823.17643.5b

10. Kök M. V. Thermal investigation of Seyitomer oil shale // Thermochim. Acta. 2001. Vol. 369, No. 1–2. P. 149–155.
http://dx.doi.org/10.1016/S0040-6031(00)00764-4

11. Kök, M. V. Heating rate effect on the DSC kinetics of oil shales // J. Therm. Analys. Calorim. 2007. Vol. 90, No. 3. P. 817–821.
http://dx.doi.org/10.1007/s10973-007-8240-3

12. Kök, M. V., Pamir, R. Pyrolysis kinetics of oil shales determined by DSC and TG/DTG // Oil Shale. 2003. Vol. 20, No. 1. P. 57–68.

13. Karabakan, A., Yürüm, Y. Effect of the mineral matrix in the reactions of oil shales: 1. Pyrolysis reactions of Turkish Göynük and US Green River oil shales // Fuel. 1998. Vol. 77, No.12. P. 1303–1309.

14. Sert, M., Ballice, L., Yüksel, M., Sağlam, M. Effect of mineral matter on pro­duct yield and composition at isothermal pyrolysis of Turkish oil shales // Oil Shale. 2009. Vol. 26, No. 4. P. 463–474.

15. Ballice, L. Stepwise chemical demineralization of Göynük (Turkey) oil shale and pyrolysis of demineralization products // Ind. Eng. Chem. Res. 2006. Vol. 45, No. 3. P. 906–912.
http://dx.doi.org/10.1021/ie050751f

16. Yanik, J., Yüksel, M., Sağlam, M., Olukçu, N., Bartle, K., Frere, B. Charac­terization of the oil fractions of shale oil obtained by pyrolysis and super­critical water extraction // Fuel. 1995. Vol. 74, No. 1. P. 46–50.

17. Luik, H., Palu, V., Bityukov, M., Luik, L., Kruusement, K., Tamvelius, H., Pryadka, N. Liquefaction of Estonian kukersite oil shale kerogen with selected superheated solvents in static conditions // Oil Shale. 2005. Vol. 22, No. 1. P. 25–36.

18. Tiikma, L., Johannes, I., Luik, H., Zaidentsal, A., Vink, N. Thermal dissolu­tion of Estonian oil shale // J. Anal. Appl. Pyrol. 2009. Vol. 85, No. 1–2. P. 502–507.
http://dx.doi.org/10.1016/j.jaap.2008.09.009

19. Gersten, J., Fainberg, V., Hetsroni, G., Shindler, Y. Kinetic study of the thermal decomposition of polypropylene, oil shale, and their mixture // Fuel. 2000. Vol. 79, No. 13. P. 1679–1686.

20. Tiikma, L., Luik, H., Pryadka, N. Co-pyrolysis of Estonian shales with low density polyethylene // Oil Shale. 2004. Vol. 21, No. 1. P. 75–85.

21. Bozoglu, C., Karayildirim, T., Yanik, J. Utilization of products obtained from copyrolysis of oil shale and plastic // Oil Shale. 2009. Vol. 26, No. 4. P. 475–490.

22. Aboulkas, A., El harfi, K., Nadifiyine, M., El bouadili, A. Investigation on pyrolysis of Moroccan oil shale/plastic mixtures by thermogravimetric analysis // Fuel Process. Technol. 2008. Vol. 89, No. 1. P. 1000–1006.
http://dx.doi.org/10.1016/j.fuproc.2008.03.011

23. Luik, H., Luik, L., Tiikma, L., Vink, N. Parallels between slow pyrolysis of Estonian oil shale and forest biomass residues // J. Anal. Appl. Pyrol. 2007. Vol. 79, No. 1–2. P. 205–209.
http://dx.doi.org/10.1016/j.jaap.2006.12.003

24. Matsumura, Y., Nonaka, H., Yokura, H., Tsutsumi, A., Yoshid, K. Co-lique­faction of coal and cellulose in supercritical water // Fuel. 1999. Vol. 78, No. 9. P. 1049–1056.

25. Veski, R., Palu, V., Kruusement, K. Co-liquefaction of kukersite oil shale and pine wood in supercritical water // Oil Shale. 2006. Vol. 23, No. 3. P. 236–248.

26. Luik, H., Palu, V., Luik, L., Kruusement, K., Tamvelius, H., Veski, R., Vet­kov, N., Vink, N., Bitjukov, M. Trends in biomass thermochemical lique­faction: global experience and recent studies in Estonia // Proc. Estonian Acad. Sci. Chem. 2005. Vol. 54, No. 4. P. 194–229.

27. Luik, L., Luik, H., Palu, V., Kruusement, K., Tamvelius, H. Conversion of the Estonian fossil and renewable feedstocks in the medium of supercritical water // J. Anal. Appl. Pyrolys. 2009. Vol. 85, No. 1–2. P. 492–496.
http://dx.doi.org/10.1016/j.jaap.2008.09.012

28. Özcan, M. Characteristics of fruit and oil of terebinth (Pistacia terebinthus L) growing wild in Turkey // J. Sci. Food Agric. 2004. Vol. 84, No. 6. P. 517–520.
http://dx.doi.org/10.1002/jsfa.1632

29. Kumar, S., Gupta, R. B. Biocrude production from switchgrass using sub­critical water // Energ. Fuel. 2009. Vol. 23, No. 10. P. 5151–5159.
http://dx.doi.org/10.1021/ef900379p

30. Minowa, T., Zhen, F., Ogi, T., Varhegyi, G. Decomposition of cellulose and glucose in hot-compressed water under catalyst-free conditions // J. Chem. Eng. Jpn. 1998. Vol. 31, No. 1. P. 131–134.
http://dx.doi.org/10.1252/jcej.31.131

31. Yuan, X. Z., Tong, J. Y., Zeng, G. M., Li, H., Xie, W. Comparative studies of products obtained at different temperatures during straw liquefaction by hot compressed water // Energ. Fuel. 2009. Vol. 23, No. 6. P. 3262–3267.
http://dx.doi.org/10.1021/ef900027d

32. Duman, G., Okutucu, C., Ucar, S., Stahl, R., Yanik, J. The slow and fast pyrolysis of cherry seeds // Bioresource Technol. 2011. Vol. 102, No. 2. P. 1869–1878.
http://dx.doi.org/10.1016/j.biortech.2010.07.051

33. Karagöz, S., Bhaskar, T., Muto, A., Sakata, Y. Catalytic hydrothermal treat­ment of pine wood biomass: effect of RbOH and CsOH on product distribu­tion // J. Chem. Technol. Biot. 2005. Vol. 80, No. 10. P. 1097–1102.
http://dx.doi.org/10.1002/jctb.1287

34. Karagöz, S., Bhaskar, T., Muto, A., Sakata, Y. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment // Fuel. 2005. Vol. 84, No. 7–8. P. 875–884.

Back to Issue