High-temperature water vapor (H2O) and carbon dioxide (CO2 ) improved the yield and quality of shale oil during oil shale pyrolysis. Aiming to fill knowledge gaps regarding the kinetic mechanism of oil shale pyrolysis in different atmospheres, the pyrolysis behavior and kinetics of Jimusar (JM) oil shale with H2O, CO2 and N2 injections were fully studied in this paper. The results revealed that compared with the N2 injection, the presence of both H2O and CO2 increased the mass loss and mass loss rate, advanced the initial precipitation temperature as well as peak temperature and moved the pyrolysis zone to the low-temperature zone, indicating that both H2O and CO2 injections promoted the pyrolysis behavior of oil shale. The comprehensive release characteristic index of volatiles during oil shale pyrolysis at the heating rate of 20 °C/min with H2O and CO2 injections increased by 37.02% and 18.94%, respectively, which significantly improved pyrolysis reactivity; so, the effect of the H2O injection was higher than that of the CO2 injection. The average activation energy of Jimusar oil shale pyrolysis was as follows: the first stage < the second stage < the third stage. During oil shale kerogen pyrolysis (the second stage), the activation energies with N2 , CO2 and H2O injections exhibited an initial rising trend, then a decreasing trend followed by a constantly decreasing trend and a fluctuating trend with an increase in the conversion rate, respectively. The presence of H2O and CO2 changed the pyrolysis mechanism of oil shale kerogen from a first-order model to a diffusion model. The kinetic mechanism functions of oil shale pyrolysis with N2 , CO2 and H2O injections were f(α) = 1–α, f(α) = [–ln(1–α)]–1, and f(α) = 1.5(1–α)2/3[1–(1–α)1/3]–1, respectively. The pyrolysis conversion curves of Jimusar oil shale with N2, CO2 and H2O injections obtained from the kinetic parameters were consistent with the experimental curves.
1. Lu, Y., Wang, Z. J., Kang, Z. Q., Li, W., Yang, D., Zhao, Y. S. Comparative study on the pyrolysis behavior and pyrolysate characteristics of Fushun oil shale during anhydrous pyrolysis and sub/supercritical water pyrolysis. RSC Adv., 2022, 12(26), 16329‒16341.
https://doi.org/10.1039/D2RA02282F
2. Yang, D., Zhao, Y. S., Kang, Z. Q. Numerical simulation of in situ exploitation of oil shale by injecting high-temperature steam. Oil Shale, 2019, 36(4), 483‒500.
https://doi.org/10.3176/oil.2019.4.03
3. Zhao, J., Yang, L. S., Yang, D., Kang, Z. Q., Wang, L. Study on pore and fracture evolution characteristics of oil shale pyrolysed by high-temperature water vapour. Oil Shale, 2022, 39(1), 79‒95.
https://doi.org/10.3176/oil.2022.1.05
4. Yang, D., Wang, L., Zhao, Y. S., Kang, Z. Q. Investigating pilot test of oil shale pyrolysis and oil and gas upgrading by water vapor injection. J. Petrol. Sci. Eng., 2021, 196, 108101.
https://doi.org/10.1016/j.petrol.2020.108101
5. Bai, J. R., Hao, T. T., Yang, L., Wang, B., Wang, J. Z. Pyrolysis characteristics of oil shale in CO2/N2 atmosphere. Clean Coal Technology, 2022, 28(7), 103‒110 (in Chinese).
6. Kang, Z. Q., Wang, Z. J., Lu, Y., Cao, R., Huang, D. W., Meng, Q. R. Investigation on the effect of atmosphere on the pyrolysis behavior and oil quality of Jimusar oil shale. Geofluids, 2022, 1408690.
https://doi.org/10.1155/2022/1408690
7. Wang, Q., Wang, X. M., Pan, S. Study on the structure, pyrolysis kinetics, gas release, reaction mechanism, and pathways of Fushun oil shale and kerogen in China. Fuel Process. Technol., 2022, 225, 107058.
https://doi.org/10.1016/j.fuproc.2021.107058
8. Ma, Y., Li, S. Y., Wang, J., Fang, C. H. Kinetics of oil shale pyrolysis under saturated aqueous medium. CIESC Journal, 2010, 61(9), 2474‒2479 (in Chinese).
9. Liang, K., Liang, J., Shi, L. X., Ma, G. F., Wang, L., Wang, J., Liang, P. Effects of heating rate on the pyrolysis characteristics and kinetics of Huadian oil shale. Journal of Mining Science and Technology, 2018, 3(2), 194‒200 (in Chinese).
10. Zhao, S., Sun, Y. H., Lü, X. S., Li, Q. Kinetics and thermodynamics evaluation of carbon dioxide enhanced oil shale pyrolysis. Sci. Rep., 2021, 11(1), 516.
https://doi.org/10.1038/s41598-020-80205-4
11. Kelemen, S. R., Afeworki, M., Gorbaty, M. L., Sansone, M., Kwiatek, P. J., Walters, C. C., Freund, H., Siskin, M., Bence, A. E., Curry, D. J., Solum, M., Pugmire, R. J., Vandenbroucke, M., Leblond, M., Behar, F. Direct characterization of kerogen by X-ray and solid-state 13C nuclear magnetic resonance methods. Energy Fuels, 2007, 21(3), 1548‒1561.
https://doi.org/10.1021/ef060321h
12. Chen, X. P., Gu, L. F., Han, X. Q., Zhao, C. S., Liu, D. Y. Pyrolysis characteristics and ash fusion property of sludge and blended fuel of sludge and coal. Journal of Southeast University, 2008, 38(6), 1038‒1043 (in Chinese).
13. Qiu, P. H., Zhao, Y., Chen, X. Y., Xu, J. J., Du, Y. W., Fang, L. X., Sun, S. Z. Effects of alkali and alkaline earth metallic species on pyrolysis characteristics and kinetics of Zhundong coal. Journal of Fuel Chemistry and Technology, 2014, 42(10), 1178‒1189 (in Chinese).
14. Chen, J. B. Study on Pyrolysis and Combustion Characteristics and Kinetics of Petrochemical Wastewater Sludge, Coal, and Their Blends. PhD Thesis, Dalian University of Technology, 2016 (in Chinese).
15. Zou, S. P., Wu, Y. L., Yang, M. D., Li, C., Tong, J. M. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour. Technol., 2010, 101(1), 359‒365.
https://doi.org/10.1016/j.biortech.2009.08.020
16. Tang, L. Y., Yan, Y. X., Meng, Y., Wang, J. Y., Jiang, P., Pang, C. H., Wu, T. CO2 gasification and pyrolysis reactivity evaluation of oil shale. Energy Procedia, 2019, 158, 1694‒1699.
https://doi.org/10.1016/j.egypro.2019.01.394
17. Lewan, M. D., Roy, S. Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of the Green River Formation. Org. Geochem., 2011, 42(1), 31‒41.
https://doi.org/10.1016/j.orggeochem.2010.10.004
18. Ceron, A. L., Konist, A. Co-pyrolysis of woody biomass and oil shale in a batch reactor in CO2, CO2-H2O, and Ar atmospheres. Energies, 2023, 16(7), 3145.
https://doi.org/10.3390/en16073145
19. Sun, B. Z., Wang, Q., Wang, H. G., Liu, H. P., Li, S. H. Study on change of activation energy of oil shale devolatilization and combustion. Proceedings of the CSEE, 2011, 31(35), 103‒109 (in Chinese).
20. Wu, X. L., Lyu, L. H., Ma, Q. X., Zeng, C. Y., Zhao, T. S. Research progress of nickel-based catalysts for carbon dioxide reforming of methane. Clean Coal Technology, 2021, 27(3), 129‒137 (in Chinese).
21. Cui, X. J., Su, H. Y., Chen, R. X., Yu, L., Dong, J. C., Ma, C., Wang, S. H., Li, J. F., Yang, F., Xiao, J. P., Zhang, M. T., Ma, D., Deng, D. H., Zhang, D, H., Tian, Z. Q., Bao, X. H. Room-temperature electrochemical water-gas shift reaction for high purity hydrogen production. Nat. Commun., 2019, 10(1), 86.
https://doi.org/10.1038/s41467-018-07937-w
22. Kang, Z. Q., Li, X., Yang, T., Zhao, J., Zhao, Y. S., Yang, D. Comparisons of pore structures of oil shale upon conduction and convection heating. Chin. J. Rock Mech. Eng., 2018, 37(11), 2565‒2575 (in Chinese).
23. Li, S. H., Bai, J. R., Sun, B. Z., Hu, A. J., Wang, Q. Effect of heating rate on the pyrolysis characteristics of oil shales. Chemical Engineering, 2007, 215(1), 64‒67 (in Chinese).
24. Duan, W. J., Yu, Q. B., Xie, H. Q., Qin, Q. Pyrolysis of coal by solid heat carrier – experimental study and kinetic modeling. Energy, 2017, 135, 317‒326.
https://doi.org/10.1016/j.energy.2017.06.132
25. Chi, H. Y., Li, H. J., Xu, K., Liu, H., Su, S., Hu, S., Xiang, J. Comprehensive study on the effect of CO2 on coal pyrolysis at fast heating rate. Energy Rep., 2021, 7(7), 1369‒1378.
https://doi.org/10.1016/j.egyr.2021.09.125
26. Bai, J. R., Pan, S. H., Wang, Q., Chi, M. S., Li, T. Pyrolysis characteristics of Inner Mongolia oil shales with different organic matter contents.Chemical Industry and Engineering Progress, 2017, 36(7), 2428‒2435 (in Chinese).
27. Li, H. W., Wang, X. H., Li, X., Su, Y., Zhang, S. C., Song, Q. S., Tang, Z. F. Experimental studies on n-heptane pyrolytic characteristics in CO2/H2O atmo-sphere. J. Anal. Appl. Pyrolysis, 2021, 154, 104999.
https://doi.org/10.1016/j.jaap.2020.104999
28. Policella, M., Wang, Z. W., Burra, K. G., Gupta, A. K. Characteristics of syngas from pyrolysis and CO2-assisted gasification of waste tires. Applied Energy, 2019, 254, 113678.
https://doi.org/10.1016/j.apenergy.2019.113678
29. Du, J. X., Yu, J., Qiao, L., Reina, T. R., Sun, L. H. The reaction mechanism and sulfur evolution during vulcanized nature rubber pyrolysis in the atmosphere of H2O: A ReaxFF molecular dynamics study. Polym. Degrad. Stabil., 2022, 203, 110064.
https://doi.org/10.1016/j.polymdegradstab.2022.110064
30. Aljaziri, J., Gautam, R., Alturkistani, S., Fiene, G. M., Tester, M., Sarathy, S. M. On the effects of CO2 atmosphere in the pyrolysis of Salicornia bigelovii. Bioresour. Technol. Rep., 2022, 17, 100950.
https://doi.org/10.1016/j.biteb.2022.100950
31. Kim, S., Yang, W. Y., Lee, H. S., Tsang, Y. F., Lee, J. H. Effectiveness of CO2-mediated pyrolysis for the treatment of biodegradable plastics: A case study of polybutylene adipate terephthalate/polylactic acid mulch film. J. Clean. Prod., 2022, 372, 133763.
https://doi.org/10.1016/j.jclepro.2022.133763
32. Chen, C. X., Lu, Z. G., Ma, X. Q., Long, J., Peng, Y. N., Hu, L. K., Lu, Q. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis. Bioresour. Technol., 2013, 144, 563‒571.
https://doi.org/10.1016/j.biortech.2013.07.011