ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Addendum to the article Viscosity data for kukersite shale gasoline fractionsˮ (Oil Shale, 2022, 39, 4, 241–251); pp. 166–175
PDF | https://doi.org/10.3176/oil.2023.2.05

Author
Vahur Oja
Abstract

The evaluation of experimental data is based on the disclosure of essential information related to data measurement. A recent paper published in the journal Oil Shale presented experimental viscosity data on narrow boiling range fractions, prepared by distillation from a wide gasoline fraction of Kukersite oil shale pyrolysis oil (from an industrial plant). However, the article suffers from a deficiency of experimental description coupled with somewhat of an oversimplification of derivation of viscosity data from capillary viscometer measurements. Therefore, this addendum or short commentary supplemental article provides additional experimental information desirable for data evaluation and interpretation, along with corresponding corrections to the data.

References

1. Baird, Z. S., Yanchilin, A., Oja, V., Järvik, O. Viscosity data for kukersite shale gasoline fractions. Oil Shale, 2022, 39(4), 241–251.
https://doi.org/10.3176/oil.2022.4.01

2. Oja, V., Suuberg, E. M. Oil shale processing, chemistry, and technology. In: Fossil Energy, Encyclopedia of Sustainability Science and Technology Series (Malhotra, R., ed.). Springer, New York, NY, 2020, 47–83.
https://doi.org/10.1007/978-1-4939-9763-3_102

3. Golubev, N. Solid oil shale heat carrier technology for oil shale retorting. Oil Shale, 2003, 20(3S), 324–332.
https://doi.org/10.3176/oil.2003.3S.05

4. Elenurm, A., Oja, V., Tali, E., Tearo, E., Yanchilin, A. Thermal processing of dictyonema argillite and kukersite oil shale: Transformation and distribution of sulfur compounds in pilot-scale Galoter process. Oil Shale, 2008, 25(3), 328−333.
https://doi.org/10.3176/oil.2008.3.04

5. Oja, V. Characterization of tars from Estonian Kukersite oil shale based on their volatility. J. Anal. Appl. Pyrolysis, 2005, 74(1‒2), 55‒60.
https://doi.org/10.1016/j.jaap.2004.11.032

6. Oja, V. Examination of molecular weight distributions of primary pyrolysis oils from three different oil shales via direct pyrolysis Field Ionization Spectrometry. Fuel, 2015, 159, 759−765.
https://doi.org/10.1016/j.fuel.2015.07.041

7. ASTM D86. Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure. ASTM International, West Conshohocken, PA, USA, 2012.

8. Siitsman, C., Oja, V. Application of a DSC based vapor pressure method for examining the extent of ideality in associating binary mixtures with narrow boiling range oil cuts as a mixture component. Thermochim. Acta, 2016, 637, 24−30.
https://doi.org/10.1016/j.tca.2016.05.011

9. ASTM D2892-15. Standard Test Method for Distillation of Crude Petroleum (15-Theoretical Plate Column). ASTM International, West Conshohocken PA, 2015.

10. Mozaffari, P., Baird, Z. B., Listak, M., Oja, V. Vapor pressures of narrow gasoline fractions of oil from industrial retorting of Kukersite oil shale. Oil Shale, 2020, 37(4), 288−303.
https://doi.org/10.3176/oil.2020.4.03

11. Riazi, M. R. Characterization and Properties of Petroleum Fractions. ASTM manual series MNL 50. ASTM International, 2005.
https://doi.org/10.1520/MNL50_1ST-EB

12. Tsonopoulos, C., Heidman, J. L., Hwang, S.-C. Thermodynamic and Transport Properties of Coal Liquids. Wiley, 1986.

13. Baird, Z. S., Oja, V. Multivariate models based on infrared spectra as a substitute for oil property correlations to predict thermodynamic properties: evaluated on the basis of the narrow-boiling fractions of Kukersite retort oil. Oil Shale, 2022, 39(1), 20–36.
https://doi.org/10.3176/oil.2022.1.02

14. Oja, V., Rooleht, R., Baird, S. Z. Physical and thermodynamic properties of kukersite pyrolysis shale oil: literature review. Oil Shale, 2016, 33(2), 184−197.
https://doi.org/10.3176/oil.2016.2.06

15. Siitsman, C., Oja, V. Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts. Thermochim. Acta, 2015, 622, 31–37.
https://doi.org/10.1016/j.tca.2015.04.011

16. Rannaveski, R., Oja, V. A new thermogravimetric application for determination of vapour pressure curve corresponding to average boiling points of oil fractions with narrow boiling ranges. Thermochim. Acta, 2020, 683, 178468.
https://doi.org/10.1016/j.tca.2019.178468

17. Astra, H.-L., Oja, V. Vapour pressure data for 2-n-propylresorcinol, 4-ethyl-resorcinol and 4-hexylresorcinol near their normal boiling points measured by differential scanning calorimetry. J. Chem. Thermodyn., 2019, 134, 119–126.
https://doi.org/10.1016/j.jct.2019.03.008

18. Rannaveski, R., Listak, M., Oja, V. ASTM D86 distillation in the context of average boiling points as thermodynamic property of narrow boiling range oil fractions. Oil Shale, 2018, 35(3), 254‒264.
https://doi.org/10.3176/oil.2018.3.05

19. van Velzen, D., Cardozo, R. L., Langenkamp, H. A liquid viscosity-temperature-chemical constitution relation for organic compounds. Ind. Eng. Chem. Fundam., 1972, 11(1), 20–25.
https://doi.org/10.1021/i160041a004

20. Aboul-Seoud, A.-L., Moharam, H. M. A generalized viscosity correlation for undefined petroleum fractions. Chem. Eng. J., 1999, 72(3), 253–256.
https://doi.org/10.1016/S1385-8947(98)00131-4

21. Abu-Eishah, S. I. A new correlation for prediction of the kinematic viscosity of crude oil fractions as a function of temperature, API gravity, and 50% boiling-point temperature. Int. J. Thermophys., 1999, 20, 1425–1434.
https://doi.org/10.1023/A:1021437021108

22. Stratiev, D. S., Nenov, S., Shishkova, I. K., Dinkov, R. K., Zlatanov, K., Yordanov, D., Sotirov, S., Sotirova, E., Atanassova, V., Atanassov, K., Stratiev, D. D., Todorova-Yankova, L. Comparison of empirical models to predict viscosity of secondary vacuum gas oils. Resources, 2021, 10(8), 82–99.
https://doi.org/10.3390/resources10080082

Back to Issue