ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Research article
Determination of some physico-thermal and mechanical characteristics of hydrated Jordanian Lajjun oil shale ash; pp. 133–150
PDF | https://doi.org/10.3176/oil.2023.2.03

Authors
Ali Shawabkeh, Fatemah Alansari, Djamel Ghernaout, Noureddine Ali Elboughdiri
Abstract

The hydration of oil shale ash at different water-to-ash weight (W/A) ratios ranging from 0.4 to 0.8 was experimentally investigated. The ash hydrate’s physical characteristics, its particles’ elemental composition, and the existing crystalline phases were identified using NBrunauer-Emmerich-Teller (N2-BET), Energy Dispersive X-ray (EDX) and X-ray Powder Diffraction (XRD) measurement techniques. The formed hydration cementitious products were found to be stratlingite (2CaO·Al2O3·SiO2·8H2O), ettringite (6CaO·Al2O3·3SiO3·32H2O), and melilite (2CaO·Al2O3·SiO) in the oil shale ash hydrated at W/A = 0.6. These same phases with different relative amounts were found in the oil shale ash hydrated at W/A = 0.8 in addition to calcium silicate hydrates (CSH). The drop in the physico-thermal properties (bulk density and thermal conductivity) of the hydrated ash was attributed to the formation of cementitious products, mainly to stratlingite, melilite, and ettringite. The hydrated ash’s mechanical properties (bending and compressive strengths) were found to increase at higher W/A due to the formation of cementing materials, particularly CSH.

References

1. Wang, Q., Sun, B., Wu, X., Bai, J., Sun, J. Study on combustion characteristics of mixtures of Huadian oil shale and semicoke. Oil Shale, 2007, 24(2), 135–145. 
https://doi.org/10.3176/oil.2007.2.04

2. Kaljuvee, T., Jefimova, J., Loide, V., Uibu, M., Einard, M. Influence of the post-granulation treatment on the thermal behaviour and leachability characteristics of Estonian oil shale ashes. J. Therm. Anal. Calorim., 2018, 132(1), 47–57. 
https://doi.org/10.1007/s10973-017-6875-2

3. Kuusik, R., Uibu, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers. Oil Shale, 2005, 22(4S), 407–419. 
https://doi.org/10.3176/oil.2005.4s.04

4. Hadi, N. A. R. A., Abdelhadi, M. Characterization and utilization of oil shale ash mixed with granitic and marble wastes to produce lightweight bricks. Oil Shale, 2018, 35(1), 56–69. 
https://doi.org/10.3176/oil.2018.1.04

5. Al-Shawabkeh, A., Matsuda, H., Hasatani, M. Utilization of highly improved fly ash for SOcapture. J. Chem. Eng. Japan, 1995, 28(1), 53–58. 
https://doi.org/10.1252/jcej.28.53

6. Al-Shawabkeh, A., Maisuda, H., Hasatani, M. Comparative reactivity of treated FBC- and PCC-fly ash for SO2 removal. Can. J. Chem. Eng., 1995, 73(5), 678–685. 
https://doi.org/10.1002/cjce.5450730511

7. Usta, M. C., Yörük, C. R., Hain, T., Paaver, P., Snellings, R., Rozov, E., Gregor, A., Kuusik, R., Trikkel, A., Uibu, M. Evaluation of new applications of oil shale ashes in building materials. Minerals, 2020, 10(9), 1–19. 
https://doi.org/10.3390/min10090765

8. Raado, L.-M., Kuusik, R., Hain, T., Uibu, M., Somelar, P. Oil shale ash based stone formation - hydration, hardening dynamics and phase transformations. Oil Shale, 2014, 31(1), 91–101. 
https://doi.org/10.3176/oil.2014.1.09

9. Mõtlep, R., Sild, T., Puura, E., Kirsimäe, K. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments. J. Hazard. Mater., 2010, 184(1–3), 567–573. 
https://doi.org/10.1016/j.jhazmat.2010.08.073

10. Kuusik, R., Paat, A., Veskimäe, H., Uibu, M. Transformations in oil shale ash at wet deposition. Oil Shale2004, 21(1), 27–42. 
https://doi.org/10.3176/oil.2004.1.04

11. Liira, M., Kirsimäe, K., Kuusik, R., Mõtlep, R. Transformation of calcareous oil-shale circulating fluidized-bed combustion boiler ashes under wet conditions. Fuel, 2009, 88(4), 712–718. 
https://doi.org/10.1016/j.fuel.2008.08.012

12. Jozewicz, W., Chang, J. C. S., Brna, T. G., Sedman, C. B. Reactivation of solids from furnace injection of limestone for sulfur dioxide control. Environ. Sci. Technol., 1987, 21(7), 664–670. 
https://doi.org/10.1021/es00161a007

13. Coal Ash Utilization: Fly Ash, Bottom Ash and Slag 1978 (Torrey, S., ed.)NJ, Noyes Data Corporation, 1978. 
https://doi.org/10.1016/0361-3658(81)90030-8

14. Aljbour, S. H. Production of ceramics from waste glass and Jordanian oil shale ash. Oil Shale, 2016, 33(3), 260–271. 
https://doi.org/10.3176/oil.2016.3.05

15. Irha, N., Uibu, M., Jefimova, J., Raado, L.-M., Hain, T., Kuusik, R. Leaching behaviour of Estonian oil shale ash-based construction mortars. Oil Shale, 2014, 31(4), 394–411. 
https://doi.org/10.3176/oil.2014.4.07

16. Kaljuvee, T., Uibu, M., Yörük, C. R., Einard, M., Trikkel, A., Kuusik, R., Trass, O., Štubňa, I., Húlan, T., Loide, V., Jefimova, J. Study of thermooxidation of oil shale samples and basics of processes for utilization of oil shale ashes. Minerals, 2021, 11(2), 193. 
https://doi.org/10.3390/min11020193

17. Al-Harahsheh, A., Al-Otoom, A. Y., Shawabkeh, R. A. Sulfur distribution in the oil fractions obtained by thermal cracking of Jordanian El-Lajjun oil shale. Energy, 2005, 30(15), 2784–2795. 
https://doi.org/10.1016/j.energy.2005.01.013

18. Kaljuvee, T., Keelmann, M., Trikkel, A., Kuusik, R. Thermooxidative decomposition of oil shales. J. Therm. Anal. Calorim., 2011, 105(2), 395–403. 
https://doi.org/10.1007/s10973-010-1033-0

19. Marangoni, M., Ponsot, I., Kuusik, R., Bernardo, E. Strong and chemically inert sinter crystallised glass ceramics based on Estonian oil shale ash. Adv. Appl. Ceram., 2014, 113(2), 120–128. 
https://doi.org/10.1179/1743676113Y.0000000132

20. Trikkel, A., Keelmann, M., Kaljuvee, T., Kuusik, R. CO2 and SO2 uptake by oil shale ashes: Effect of pre-treatment on kinetics. J. Therm. Anal. Calorim., 2010, 99(3), 763–769. 
https://doi.org/10.1007/s10973-009-0423-7

21. Tsuchiai, H., Ishizuka, T., Ueno, T., Hattori, H., Kita, H. (1995). Highly active absorbent for SO2 removal prepared from coal fly ash. Ind. Eng. Chem. Res., 1995, 34(4), 1404–1411. 
https://doi.org/10.1021/ie00043a048

22. Balo, F., Ucar, A., Lütfi Yücel, H. Development of the insulation materials from coal fly ash, perlite, clay and linseed oil. Ceram-Silikaty, 2010, 54(2), 182–191.

23. Blinova, I., Bityukova, L., Kasemets, K., Ivask, A., Käkinen, A., Kurvet, I., Bondarenko, O., Kanarbik, L., Sihtmäe, M., Aruoja, V., Schvede, H., Kahru, A. Environmental hazard of oil shale combustion fly ash. J. Hazard. Mater., 2012, 229–230, 192–200. 
https://doi.org/10.1016/j.jhazmat.2012.05.095

24. Demirboǧa, R. Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energy Build., 2003, 35(2), 189–192. 
https://doi.org/10.1016/S0378-7788(02)00052-X

25. Demirboǧa, R. Thermo-mechanical properties of sand and high volume mineral admixtures. Energy Build., 2003, 35(5), 435–439. 
https://doi.org/10.1016/S0378-7788(02)00159-7

26. Kaljuvee, T., Štubňa, I., Húlan, T., Kuusik, R. Heating rate effect on the thermal behavior of some clays and their blends with oil shale ash additives. J. Therm. Anal. Calorim., 2017, 127(1), 33–45. 
https://doi.org/10.1007/s10973-016-5347-4

27. Khan, M. I. Factors affecting the thermal properties of concrete and applicability of its prediction models. Build. Environ., 2002, 37(6), 607–614. 
https://doi.org/10.1016/S0360-1323(01)00061-0

28. Konist, A., Neshumayev, D., Baird, Z. S., Anthony, E. J., Maasikmets, M., Järvik, O. Mineral and heavy metal composition of oil shale ash from oxyfuel combustion. ACS Omega, 2020, 5(50), 32498–32506. 
https://doi.org/10.1021/acsomega.0c04466

29. Uysal, H., Demirboga, R., Şahin, R., Gül, R. The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cem. Concr. Res., 2004, 34(5), 845–848. 
https://doi.org/10.1016/j.cemconres.2003.09.018

30. Kaljuvee, T., Štubňa, I., Somelar, P., Mikli, V., Kuusik, R. Thermal behavior of some Estonian clays and their mixtures with oil shale ash additives. J. Therm. Anal. Calorim., 2014, 118(2), 891–899. 
https://doi.org/10.1007/s10973-014-3797-0

31. Al-Adamat, R., Al-Harahsheh, A., Al-Farajat, M. The use of GIS and leachability tests to investigate groundwater vulnerability to pollution from oil shale utilization at Lajjoun area/Southern Jordan. Jordan J. Civ. Eng., 2010, 4(3), 253–263.

32. Al-Harahsheh, A., Al-Adamat, R., Al-Farajat, M. Potential impacts on surface water quality from the utilization of oil shale at Lajjoun area/Southern Jordan using geographic information systems and leachability tests. Energ. Source. Part A, 2010, 32(19), 1763–1776. 
https://doi.org/10.1080/15567036.2010.491779

33. Al-Otoom, A. Y., Shawabkeh, R. A., Al-Harahsheh, A. M., Shawaqfeh, A. T. The chemistry of minerals obtained from the combustion of Jordanian oil shale. Energy, 2005, 30(5), 611–619. 
https://doi.org/10.1016/j.energy.2004.05.024

Back to Issue