ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Research article
Characterization of oil shale kerogen semi-coke and its application to remove chemical pollutants from aqueous solutions; pp. 115–132
PDF | https://doi.org/10.3176/oil.2023.2.02

Authors
Heidi Lees, Piia Jõul, Heliis Pikkor, Oliver Järvik, Birgit Mets, Alar Konist
Abstract

An alternative adsorbent from oil shale semi-coke material for removing chemical pollutants from aqueous solutions was investigated. For this purpose, enriched oil shales with different kerogen contents (57, 79 and 90 wt%) were pyrolyzed in nitrogen atmosphere at 600–900 °C at a heating rate of 10 °C/min and a hold time of 60 min. The surface properties of semi-cokes, namely Brunauer-Emmett-Teller (BET) surface area, pore volume and pore size distribution (PSD), were determined by nitrogen adsorption. The studied semi-cokes were found to be micro- and mesoporous. The highest semi-coke BET surface area, 160 m2/g, was obtained at a pyrolysis temperature of 700 °C, which corresponds to 519 m2/g of char, excluding the minerals. This porous carbon material was tested as an adsorbent to remove pesticides and phenolic compounds from aqueous solutions. Three kinds of phenolic compounds (resorcinol, 5-methylresorcinol, 4-nitrophenol) and three kinds of organophosphorus pesticides (dimethoate, parathion, malathion) were tested to study the adsorption on the semi-coke material. Different contact times were tested for the adsorption of the compounds of interest. The results showed that with an adsorbent dosage of 10 mg/mL over 98% of pesticides were removed from the solution within 30 min at an initial concentration of 100 µM (corresponding to 23–33 mg/L depending on the compound). More than 97% of the phenolic compounds were adsorbed from water within six hours at an initial concentration of 10 µM (1.1–1.4 mg/L).

References

1. Lartey-Young, G., Ma, L. Remediation with semicoke-preparation, characteri-zation, and adsorption application. Materials (Basel), 2020, 13(19), 1–23. 
https://doi.org/10.3390/ma13194334

2. Külaots, I., Goldfarb, J. L., Suuberg, E. M. Characterization of Chinese, American and Estonian oil shale semicokes and their sorptive potential. Fuel, 2010, 89(11), 3300–3306. 
https://doi.org/10.1016/j.fuel.2010.05.025

3. Vallner, L., Gavrilova, O., Vilu, R. Environmental risks and problems of the optimal management of an oil shale semi-coke and ash landfill in Kohtla-Järve, Estonia. Sci. Total Environ., 2015, 524–525(4), 400–415. 
https://doi.org/10.1016/j.scitotenv.2015.03.130

4. Pikkor, H., Maaten, B., Baird, Z. S., Järvik, O., Konist, A., Lees, H. Surface area of oil shale and its solid pyrolysis products depending on the particle size. Chem. Eng. Trans., 2020, 81, 961–966. 
https://doi.org/10.3303/CET2081161

5. Vyas, A., Xue, J., Goldfarb, J. L. Improving the environmental and economic viability of U.S. oil shale via waste-to-byproduct conversion of semicoke to sorbents. Energy Fuels, 2016, 30(1), 188–195. 
https://doi.org/10.1021/acs.energyfuels.5b02244

6. Anku, W. W., Mamo, M. A., Govender, P. P. Phenolic compounds in water: Sources, reactivity, toxicity and treatment methods. In: Phenolic Compounds – Natural Sources, Importance and Applications (Soto-Hernandez, M., Palma-Tenango, M., Garcia-Mateos, R., eds.). Intech, 2017, 419–443. 
https://doi.org/10.5772/66927

7. Sakata, M. Organophosphorus pesticides. In: Drugs and Poisons in Humans (Suzuki, O., Watanabe, K., eds.). Springer, Berlin, Heidelberg, 2005, 534–544. 
https://doi.org/10.1007/3-540-27579-7_60

8. Yan, Z., Liu, L., Zhang, Y., Liang, J., Wang, J., Zhang, Z., Wang, X. Activated semi-coke in SOremoval from flue gas: Selection of activation methodology and desulfurization mechanism study. Energy Fuels, 2013, 27(6), 3080–3089. 
https://doi.org/10.1021/ef400351a

9. Sun, P., Lai, Y., Cheng, X., Wang, Z. SO2 rapid adsorption and desorption over activated semi coke in a rotary reactor. J. Energy Inst., 2021, 96, 158–167. 
https://doi.org/10.1016/j.joei.2021.03.011

10. Wang, T., Zhou, B., Li, C., Xu, T., Fu, J., Ma, C., Song, Z. Preparation of powdered activated coke for SO2 removal using different coals through a one-step method under high-temperature flue gas atmosphere. J. Anal. Appl. Pyrolysis, 2021, 153, 104989. 
https://doi.org/10.1016/j.jaap.2020.104989

11. Jang, E., Choi, S. W., Hong, S.-M., Shin, S., Lee, B. Development of a cost-effective CO2 adsorbent from petroleum coke via KOH activation. Appl. Surf. Sci., 2018, 429, 62–71. 
https://doi.org/10.1016/j.apsusc.2017.08.075

12. Elhammoudi, N., Oumam, M., Mansouri, S., Chham, A., Abourriche, A., Hannache, H. Preparation and development of a novel activated carbon based on Moroccan oil shale using activation process. Am. J. Chem., 2017, 7(5), 163–170. 

13. Nassef, E., Eltaweel, Y. Removal of zinc from aqueous solution using activated oil shale. J. Chem., 2019, Article ID 4261210, 1–9. 
https://doi.org/10.1155/2019/4261210

14. Oumam, M., Abourriche, A., Mansouri, S., Mouiya, M., Benhammou, A., Abouliatim, Y., El Hafiane, Y., Hannache, H., Birot, M., Pailler, R., Naslain, R. Comparison of chemical and physical activation processes at obtaining adsorbents from Moroccan oil shale. Oil Shale, 2020, 37(2), 139–157. 
https://doi.org/10.3176/oil.2020.2.04

15. Chafyq, E. H., Legrouri, K., Aghrouch, M., Oumam, M., Mansouri, S., Khouya, E. H., Hannache, H. Adsorption of ciprofloxacin antibiotic on materials prepared from Moroccan oil shales. Chem. Phys. Lett., 2021, 778, 138707. 
https://doi.org/10.1016/j.cplett.2021.138707

16. Chham, A., Khouya, E. H., M., Oumam, M., Abourriche, A., Gmouh, S., Larzek, M., Mansouri, S., Elhammoudi, N., Hanafi, N., Hannache, H. The use of insoluble matter of Moroccan oil shale for removal of dyes from aqueous solution. Chem. Int., 2018, 4(1), 67–77.

17. Ichcho, S., Khouya, E., Fakhi, S., Ezzine, M., Hannache, H., Pallier, R., Naslain, R. Influence of the experimental conditions on porosity and structure of adsorbents elaborated from Moroccan oil shale of Timahdit by chemical activation. J. Hazard. Mater., 2005, 118(1–3), 45–51. 
https://doi.org/10.1016/j.jhazmat.2004.10.009

18. Ermagambet, B. T., Kasenov, B. K., Nurgaliyev, N. U., Kazankapova, M. K., Kasenova, Zh. M., Zikirina, A. M. Adsorbent production using oil shale from the Kendyrlyk Deposit. Solid Fuel Chem., 2018, 52, 302–307. 
https://doi.org/doi:10.3103/S036152191805004X

19. Gao, X., Dai, Y., Zhang, Y., Fu, F. Effective adsorption of phenolic compound from aqueous solutions on activated semi coke. J. Phys. Chem. Solids, 2017, 102, 142–150. 
https://doi.org/10.1016/j.jpcs.2016.11.023

20. Yang, X., Hou, X., Gao, X., Fu, F. Hierarchical porous carbon from semi-coke via a facile preparation method for p-nitrophenol adsorption. Colloids Surf. A: Physicochem. Eng. Asp., 2019, 563, 50–58. 
https://doi.org/10.1016/j.colsurfa.2018.11.018

21. Väli, E., Valgma, I., Reinsalu, E. Usage of Estonian oil shale. Oil Shale, 2008, 25(2S), 101–114. 
https://doi.org/10.3176/oil.2008.2s.02

22. Loo, L., Maaten, B., Siirde, A., Pihu, T., Konist, A. Experimental analysis of the combustion characteristics of Estonian oil shale in air and oxy-fuel atmospheres. Fuel Process. Technol., 2015, 134, 317–324. 
https://doi.org/10.1016/j.fuproc.2014.12.051

23. Aarna, A., Rikken, J. About the mechanism of low-temperature decomposition of kukersite oil shale. Transactions of Tallinn Polytechnic Institute, Series A, 1958, No. 97, 53–67 (in Russian).

24. Maaten, B., Siirde, A., Vahur, S., Kirsimäe, K. Influence of the end-temperature on the oil shale fast pyrolysis process and its products. J. Therm. Anal. Calorim., 2022. 
http://doi.org/10.1007/s10973-022-11567-2

Back to Issue