ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
THERMAL CRACKING AND CORRESPONDING PERMEABILITY OF FUSHUN OIL SHALE; pp. 273–283
PDF | doi: 10.3176/oil.2011.2.02

Authors
ZHIQIN KANG, DONG YANG, YANGSHENG ZHAO, YAOQING HU
Abstract
In this work, thermal cracking inside an oil shale sample under different tem­peratures was tested using a micro-CT system. The critical temperature was determined at which sharp thermal cracking in the oil shale sample occurs. It was found that the critical temperature of Chinese Fushun oil shale is 350 °C. After reaching 350 °C, all sites of the sample reveal fissures whose number, length and width increase dramatically, resulting in the formation of an enormous network of fissures. A high-temperature rock-permeability test­ing machine was used to test the changes in permeability at different tem­pera­tures. The results similar to those of thermal cracking were obtained. Therefore, thermal cracking can be regarded asthe decisive factor to affect the changes of permeability in oil shale particle.
References

  1. Wang, Q., Liu, H. P., Sun, B. Z., Li, S. H. Study on pyrolysis characteristics of Huadian oil shale with isoconversional method // Oil Shale. 2009. Vol. 26, No. 2. P. 148–162.

  2. Guo, S. H., Ruan Z. The composition of Fushun and Maoming shale oils // Fuel. 1995. Vol. 74, No. 11. P. 1719–1721.

  3. Kang, Z. Q., Zhao, Y. S., Meng, Q. R., Yang, D. et al. Micro-CT experimental research of oil shale thermal cracking laws // Chinese Journal of Geophysics. 2009. Vol. 52, No. 3. P. 842–848 [in Chinese].

  4. Meng, Q. R., Kang, Z. Q., Zhao, Y. S., Yang, D. Experiment of thermal cracking and crack initiation mechanism of oil shale // Journal of China University of Petroleum. 2010. Vol. 34, No. 4. P. 89–92 [in Chinese].

  5. Wang, Q., Sun, B. Z., Hu, A. J., Bai, J. R., Li, S. H. Pyrolysis characteristics of Huadian oil shales // Oil Shale. 2007. Vol. 24, No. 2. P. 147–157.

  6. Razvigorova, M., Budinova, T., Petrova, B., Tsyntsarski, B., Kinci, E., Fer­hat, M. F. Steam pyrolysis of Bulgarian oil shale kerogen // Oil Shale. 2008. Vol. 25, No. 1. P. 27–36.

  7. Jiang, X. M., Han, X. X., Cui, Z. G. New technology for the comprehensive utilization of Chinese oil shale resources // Energy. 2007. Vol. 32, No. 5. P. 772–777.

  8. Kök, M. V., Guner, G., Bagci, S. Laboratory steam injection applications for oil shale fields of Turkey // Oil Shale. 2008. Vol. 25, No. 1. P. 37–46.

  9. El harfi, K., Mokhlisse, A., Chanaa, M. B., Outzourhit, A. Pyrolysis of Moroccan (Tarfaya) oil shales under microwave irradiation // Fuel. 2000. Vol. 79, No. 7. P. 733–742.

10. Kang, Z. Q., Zhao, Y. S., Yang, D. Physical principle and numerical analysis of oil shale development using in-situ conversion process technology // Acta Petrolei Sinica. 2008. Vol. 29, No. 4. P. 592–595 [in Chinese].

11. Kang, Z. Q., Lü, Z. X., Yang, D. et al. The solid-fluid-thermal-chemistry coupl­ing mathematical model for oil shale in-situ steam injecting development // Journal of Xian Shiyou University. 2008. Vol. 23, No. 4. P. 30–34 [in Chinese].
Back to Issue