In this study, kinetic modeling of the pyrolysis process was performed using a newly developed variable reaction order. The variable reaction order was inferred directly from the experimental data and correlated with heating rate, h, (°Cmin–1), rate of conversion, dx/dt and a constant equal with 8.314 (°C). The range of generated values of the variable reaction order varied between 1.99 and 1.85.
Conversion of a sample was calculated basing on initial and final weight of the sample at the end of run. A satisfactory fit of the experimental data was obtained using the equation developed for a variable reaction order.
1. Kök, M. V., Iscan, A. G. Oil shale kinetics by differential methods // J. Therm. Anal. Calorim. 2007. Vol. 88, No. 3. P. 657–661.
doi:10.1007/s10973-006-8027-y
2. Campbell, J. H., Gallegos, G., Gregg, M. Gas evolution during oil shale pyrolysis. 2. Kinetic and stoichiometric analysis // Fuel. 1980. Vol. 59, No. 10. P. 727–732.
3. Bhargava, S., Awaja, F., Subasinghe, N. D. Characterisation of some Australian oil shale using thermal, X-ray and IR techniques // Fuel. 2005. Vol. 84, No. 6. P. 707–715.
4 Li, S., Yue, C. Study of different models for oil shale pyrolysis // Fuel Process. Technol. 2004. Vol. 85, No. 1. P. 51–61.
doi:10.1016/S0378-3820(03)00097-3
5. Djuricic, M., Murphy, R. C., Vitorovic, D., Biemann, K. Organic acids obtained by alkaline permanganate oxidation of kerogen from the Green River (Colorado) shale // Geochim. Cosmochim. Acta. 1971. Vol. 35, No. 12. P. 1201–1207.
doi:10.1016/0016-7037(71)90111-6
6. Young, D. K., Yen, T. F. The nature of straight-chain aliphatic structures in green river kerogen // Geochim. Cosmochim. Acta. 1977. Vol. 41, No. 10. P. 1411–1417.
doi:10.1016/0016-7037(77)90247-2
7. Olivella, M. Á., De Las Heras, F. X. C. Evaluation of linear kinetic methods from pyrolysis data of Spanish oil shales and coals // Oil Shale. 2008. Vol. 25, No. 2. P. 227–245.
8. Thakur, D. S., Nuttall Jr., H. E. Kinetics of pyrolysis of Moroccan oil shale by thermogravimetry // Ind. Eng. Chem. Res. 1987. Vol. 26, No. 7. P. 1351–1356.
doi:10.1021/ie00067a015
9. Karabakan, A., Yürüm, Y. Effect of the mineral matrix in the reactions of shales. Part 2. Oxidation reactions of Turkish Göynük and US Western Reference oil shales // Fuel. 2000. Vol. 79, No. 7. P. 785–792.
10. Yagmur, S., Durusoy, T. Kinetics of the pyrolysis and combustion of göynük oil shale // J. Therm. Anal. Calorim. 2006. Vol. 86, No. 2. P. 479–482.
doi:10.1007/s10973-005-7312-5
11. Sütcü, H., Pişkin, S. Pyrolysis kinetics of oil shale from Ulukisla, Turkey // Oil Shale. 2009. Vol. 26, No. 4. P. 491–499.
12. Qing, W., Sun, B., Hu, A., Bai, J., Li, S. Pyrolysis characteristics of Huadian oil shales // Oil Shale. 2007. Vol. 24, No. 2. P. 147–157.
13. Jaber, J. O., Probert, S. D. Pyrolysis and gasification kinetics of Jordanian oil shales // Appl. Energ. 1999. Vol. 63, No. 4. P. 269–286.
14. Al-Ayed, O. S., Matouq, M., Anbar, Z., Khaleel, A. M., Abu-Nameh, E. Oil shale pyrolysis kinetics and variable activation energy principle // Appl. Energ. 2010. Vol. 87, No. 4. P. 1269–1272.
15. Al-Ayed, O. S., Suliman, M. R., Rahman, N. A. Kinetic modeling of liquid generation from oil shale in fixed bed retort // Appl. Energ. 2010. Vol. 87, No. 7. P. 2273–2277.
16. Qing, W., Hongpeng, L., Baizhong, S., Shaohua, L. Study on pyrolysis characteristics of Huadian oil shale with isoconversional method // Oil Shale. 2009. Vol. 26, No. 2. P. 148–162.
17. Vyazovkin, S., Wight, C. A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data // Thermochim. Acta. 1999. Vol. 340–341. P. 53–68.
doi:10.1016/S0040-6031(99)00253-1
18. Torrente, M. C., Galan, M. A. Kinetics of the thermal decomposition of oil shale from Puertollano (Spain) // Fuel. 2001. Vol. 80, No. 3. P. 327–334.
doi:10.1016/S0016-2361(00)00101-0
19. Šestăk, J., Berggren, G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures // Thermochim. Acta. 1971. Vol. 3, No. 1. P. 1–12.
doi:10.1016/0040-6031(71)85051-7
20. Levenspiel, O. Chemical Reaction Engineering, 3rd ed. – New York: John Wiley & Sons, Inc., 1999.
21. Aboulkas, A., El Harfi, K. Study of the kinetics and mechanisms of thermal decomposition of Moroccan Tarfaya oil shale and its kerogen // Oil Shale. 2008. Vol. 25, No. 4. P. 426–443.
22. Skala, D., Kopsch, H., Sokić, M., Neumann, H.-J., Jovanović, J. Thermogravimetrically and differential scanning calorimetrically derived kinetics of oil shale pyrolysis // Fuel. 1987. Vol. 66, No. 9. P. 1185–1191.
23. Johannes, I., Kruusement, K., Veski, R. Evaluation of oil potential and pyrolysis kinetics of renewable fuel and shale samples by Rock-Eval analyzer // J. Anal. Appl. Pyrol. 2007. Vol. 79, No. 1–2. P. 183–190.
doi:10.1016/j.jaap.2006.12.001
24. Skala, D., Kopsch, H., Sokić, M., Neumann, H. J., Jovanović, J. A. Kinetics and modelling of oil shale pyrolysis // Fuel. 1990. Vol. 69, No. 4. P. 490–496.
25. Braun, R. L., Rothman, A. J. Oil-shale pyrolysis: Kinetics and mechanism of oil production // Fuel. 1975. Vol. 54, No. 2. P. 129–131.
26. Coats, A. W., Redfern, J. P. Kinetic parameter from thermogravimetric data // Nature. 1964. Vol. 201. P. 68–69.