ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
PRIMARY METHOD FOR REDUCTION OF SO2 EMISSION AND ITS IMPACT ON CO2 IN PULVERIZED OIL SHALE-FIRED BOILERS AT NARVA POWER PLANT; pp. 321–336
PDF | doi: 10.3176/oil.2011.2.06

Authors
Jüri Kleesmaa, E. LATÕŠOV, A. KAROLIN
Abstract
Primary method if used in pulverized oil shale-firing boilers in operation enables to achieve the target value of SO2 specific emission 400 mg/nm3. It will also be possible to meet the SO2 specific emission limit value (200 mg/nm3) set by the European Union for the new-installed solid-fuel boilers by further optimization of technological parameters of pulverized oil shale firing and construction of oil shale boilers on the basis of primary methods. Optimization would make it possible to design a pulverized oil shale-fired boiler for super­critical and ultracritical steam parameters and to enhance the efficient and environmental-friendly use of oil shale to a considerable extent.
References

  1. Directive 2001/80/EC of the European Parliament and of the Council of 23 October 2001 on the limitation of emissions of certain pollutants into the air from large combustion plants.

  2. Ots, A. Oil Shale Fuel Combustion. – Tallinn: 2006. 833 p.

  3. Arro, H., Prikk, A. Improving operation of wet gas cleaning equipment by dilution of circulating wash solution to avoid gypsum deposits // Oil Shale. l996. Vol. 13, No. 1. P. 73–78.

  4. Aunela, L., Häsänen, E., Kinnunen, V., Larjava, K., Mehtonen, A., Salmi­kan­gas, T., Leskelä, J., Loosaar, J. Emissions from Estonian oil shale power plants // Oil Shale. l995. Vol. l2, No. 2. P. 165–177.

  5. Öpik, I. Influence of Oil Shale Mineral Matter on the Boilers Operating Conditions. – Tallinn: Estonian State Publishing House, 1961 [in Russian, summary in English].

  6. Ots, A. Processes in Steam Generators During the Burning of Oil Shale and Kansk-Achinsk Coals. – Moscow: Energy, 1977 [in Russian, summary in English].

  7. Rundõgin, J. Low-Temperature Combustion of Oil Shale. – Leningrad: 1987 [in Russian, summary in English].

  8. Kaljuvee, T., Trikkel, A., Kuusik, R. Reactivity of oil shale ashes towards sulphur dioxide. 1. Activation of high-temperature ashes // Oil Shale. l997. Vol. 14, No. 3. P. 393–407.

  9. Kuusik, R., Kaljuvee, T., Trikkel, A., Arro, H. Reactivity of oil shale ashes towards sulphur dioxide. 2. Low-temperature ashes formed by using CFBC technology // Oil Shale. l999. Vol. 16, No. 1. P. 51–63.

10. Kuusik, R., Kaljuvee, T., Veskimäe, H., Roundygin, Yu., Keltman. A. Reactivity of oil shale ashes towards sulphur dioxide. 3. Recurrent use of ash for flue gas purification // Oil Shale. l999. Vol. 16, No. 4. P. 303–313.

11. Trikkel, A., Kuusik, R. Modeling of decomposition and sulphation of oil shale carbonates on the basis of natural limestone [Presented at Symposium on Oil Shale in Tallinn, Estonia, November 18–21, 2002] // Oil Shale. 2003. Vol. 20, No. 4. P. 491–500.

12. Greg, S. Adsorption, Surface Area and Porosity. – Moskva: Mir, 1984 [in Russian, summary in English].

13. Zeger, K. Additive dry method of flue gases cleaning from sulphur oxides // Energy Facilities Abroad. 1987. No. 5. P. 11–15 [in Russian, summary in English].

14. Brice, H. The first results regarding to reduction of SO2 emissions in 600 MW energy unit 5 in Provans power plant // Kraftwerkstechnik. 1987. Vol. 67, No. 7. P. 717–723 [in German].

15. Kotler, V. Nitrogen Oxides in Flue Gases from Boilers. – Moscow: Energo­atomizdat, 1987 [in Russian, summary in English].

16. Leikert, K. The reduction of NOx emissions by the use of primary methods in a different burning chambers // VGB Kraftwerkstechnik. 1986. Vol. 66, No. 7. P. 631–637 [in German].

17. Jaborski, I. The technologically techniques of solid fuel combustion as methods for prevention of nitrogen emissions. // Thermal Engineering. 1995. No. 2. P. 17–23 [in Russian, summary in English].

18. Weber, E. Nitrogen oxide – Bremsen // Energy. 1986. Vol. 38, No. 4. P. 10–15 [in Germany, summary in English].

19. Macphail, J., King, L. New Laws prompt focus on low NOx options // Modern Power Systems. 1999. November. P. 29–33.

20. Sidorkin, V., Kniga, A., Rakitina, N. The opportunity of NOx emissions reduc­tion for the pulverized oil shale fired boilers // Oil Shale. 1991. Vol. 8, No. 4. P. 355–359.

21. Hämäla, S. LIFAC cuts SOx in Finland // Modern Power Systems. 1986. Vol. 6. P. 87–91.

22. Ryyppö, M., Ekman. I. Improving the performance of LIFAC FGD in Chinese boilers // Modern Power Systems. 2000. Vol. 20, No. 11, P. 31–32.

23. Nolan, P. Desulfurization of flue gases at thermal power plants // Energetics. 1995. No. 6. P. 15–17; No. 7. P. 13–16 // Thermal Engineering. 1994. No. 6. P. 23–27 [in Russian, summary in English].

24. Overview of up-to-Date Methods of Flue Gases Cleanings from Sulfur Oxides and Utilization of By-Products. – SPO ORGRES, Moscow, 1993 [in Russian].

25. Beljaikin, V. Choice about desulphurization methods of flue gases at thermal power plants // Power Plants. 2000. No. 5. P. 14–18 [in Russian, summary in English].

26. Šmigol, I. Flue gas desulfurization technology for coal-fired thermal power plants of the Russian Federation // Electric Power Plants. 2006. No. 6. P. 27–35 [in Russian, summary in English].

27. Šmigol, I. Prospects for the use of sulfur removal facilities at thermal power plants in Russia // Energetic. 2007. No. 1. P. 12–15 [in Russian, summary in English].
Back to Issue