ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Research article
Pore types of oil shale in Jilin Province, Northeastern China; pp. 62–86
PDF | https://doi.org/10.3176/oil.2023.1.04

Authors
Fang Lu ORCID Icon, Yan Zhou ORCID Icon, Kexin Jia, Gang Han, Ping Wang, Rui Liu
Abstract

To better understand and characterize pores in oil shale systems, samples from four significant oil shale-bearing formations of the Songliao, Huadian and Luozigou basins in Jilin Province, Northeastern China, namely Qingshankou (QSK), Nenjiang (NJ), Fengtai (FT) and Longteng (LT), were prepared by breaking fresh surfaces and argon (Ar) ion polishing both perpendicular and parallel to bedding and imaged using a field emission scanning electron microscope (FE-SEM). Interparticle (interP), intraparticle (intraP) and organic matter (OM) pores are the three types of pores between or within particles of oil shale, i.e., fossils, minerals and OM. All four samples contain interP and intraP pores, but only minor OM pores occur in sample QSK. Sample FT has significant amounts of intrafossil and dissolution (intraparticle) pores due to the abundance of microfossils and the dissolution possibly caused by OM decarboxylation. Sample NJ has the highest pyrite content and contains the greatest amount of pyrite intercrystalline (intraparticle) pores, differently from sample QSK, whose amount of these pores is the lowest. Sample LT enriched with clastic particles has a large number of intercrystalline (interparticle) pores. These pores are primarily at micro- to nano-scales with various shapes, from irregular to elongated to triangular to polyhedral to rounded to elliptical, etc. There are differences in the contents of particles and OM pores between oil shales in Jilin Province and gas shales in North America. The reasons for these differences may be due to the diverse sedimentary environments and levels of maturity of oil shales. Besides, high-resolution scanning electron microscope imaging can be used to describe the diagenetic processes of oil shale.

References

1. Liu, Z., Meng, Q., Dong, Q., Zhu, J., Guo, W., Ye, S., Liu, R., Jia, J. Characteristics and resource potential of oil shale in China. Oil Shale, 2017, 34(1), 15–41. 
http://doi.org/10.3176/oil.2017.1.02

2. Deng, S. Sub-Critical Water Extraction of Organic Matter from Oil Shale Lumps. PhD thesis. Jilin University, China, 2013 (in Chinese).

3. Spain, D. R., McLin, R. SEM characterization of shale gas reservoirs using combined secondary and backscatter electron methods: An example from the Haynesville Shale, Texas and Louisiana. In: Electron Microscopy of Shale Hydrocarbon Reservoirs (Camp, W. K., Diaz, E., Wawak, B., eds.). American Association of Petroleum Geologists, Tulsa, OK, U.S.A., 2013, AAPG Memoir 102, 45–52. 
http://doi.org/10.1306/13391704M102434

4. O’Brien, N. R., McRobbie, C. A., Slatt, R. M., Baruch-Jurado, E. T., 2016.Unconventional gas-oil shale microfabric features relating to porosity, storage, and migration of hydrocarbons. In: Imaging Unconventional Reservoir Pore Systems (Olson, T., ed.). American Association of Petroleum Geologists, Tulsa, OK, U.S.A., 2016, AAPG Memoir 112, 43–64. 
http://doi.org/10.1306/13592016M1123692

5. Curtis, M. E., Sondergeld, C. H., Ambrose, R. J., Rai, C. S. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bull., 2012, 96(4), 665–677. 
http://doi.org/10.1306/08151110188

6. Desbois, G., Urai, J. L., Houben, M. E., Sholokhova, Y. Typology, morphology and connectivity of pore space in claystones from reference site for research using BIB, FIB and cryo-SEM methods. EPJ Web Conf., 2010, 6, 22005. 
http://doi.org/10.1051/epjconf/20100622005

7. Wang, Q., Liu, T., Liu, H., Qin, H., Li, S. Electron microscopy analysis of semi-coke from the microwave pyrolysis of oil shale with its fractal description. Oil Shale, 2010, 27(3), 209–228. 
http://doi.org/10.3176/oil.2010.3.03

8. Kang, Z., Yang, D., Zhao, Y., Hu, Y. Thermal cracking and corresponding permeability of Fushun oil shale. Oil Shale, 2011, 28(2), 273–283. 
http://doi.org/10.3176/oil.2011.2.02

9. Zhao, J., Yang, D., Kang, Z., Feng, Z. A micro-CT study of changes in the internal structure of Daqing and Yan’an oil shales at high temperatures. Oil Shale, 2012, 29(4), 357–367. 
http://doi.org/10.3176/oil.2012.4.06

10. Tiwari, P., Deo, M., Lin, C. L., Miller, J. D. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT. Fuel, 2013, 107, 547–554. 
http://doi.org/10.1016/j.fuel.2013.01.006

11. Saif, T., Lin, Q., Singh, K., Bijeljic, B., Blunt, M. J. Dynamic imaging of oil shale pyrolysis using synchrotron X-ray microtomography. Geophys. Res. Lett., 2016, 43(13), 6799–6807. 
https://doi.org/10.1002/2016GL069279

12. Kang, Z., Zhao, J., Yang, D., Zhao, Y., Hu, Y. Study of the evolution of micron-scale pore structure in oil shale at different temperatures. Oil Shale, 2017, 34(1), 42–54. 
http://doi.org/10.3176/oil.2017.1.03

13. Konsa, M., Puura, V., Soesoo, A., Voolma, M., Aosaar, H. Petrography and mineralogy of the Attarat Um Ghudran oil shale, Central Jordan. Oil Shale, 2017, 34(2), 110–128. 
http://doi.org/10.3176/oil.2017.2.02

14. Liu, H., Feng, S., Zhang, S., Xuan, H., Jia, C., Wang, Q. Analysis of the pore structure of Longkou oil shale semicoke during fluidized bed combustion. Oil Shale, 2020, 37(2), 89–103. 
http://doi.org/10.3176/oil.2020.2.01

15. Loucks, R. G., Reed, R. M., Ruppel, S. C., Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull., 2012, 96(6), 1071–1098. 
http://doi.org/10.1306/08171111061

16. Milner, M., McLin, R., Petriello, J. Imaging texture and porosity in mudstones and shales: Comparison of secondary and ion-milled backscatter SEM methods. In: Canadian Unconventional Resources and International Petroleum Conference, October 19–21, 2010, Calgary, Alberta, Canada. SPE Paper 138975-MS, 2010, 1–10. 
http://doi.org/10.2118/138975-MS

17. Schieber, J. Common themes in the formation and preservation of intrinsic porosity in shales and mudstones – Illustrated with examples across the Phanerozoic. In: Society of Petroleum Engineers Unconventional Gas Conference, February 23–25, 2010, Pittsburgh, Pennsylvania, U.S.A. SPE Paper 132370-MS, 2010, 1–10. 
https://doi.org/10.2118/132370-MS

18. Camp, W. K., Wawak, B. Enhancing SEM grayscale images through pseudocolor conversion: Examples from Eagle Ford, Haynesville, and Marcellus shales. In: Electron Microscopy of Shale Hydrocarbon Reservoirs (Camp, W. K., Diaz, E., Wawak, B., eds.). American Association of Petroleum Geologists, Tulsa, OK, U.S.A., 2013, AAPG Memoir 102, 15–26. 
http://doi.org/10.1306/13391701M1021681

19. Jennings, D. S., Antia, J. Petrographic characterization of the Eagle Ford shale, South Texas: Mineralogy, common constituents, and distribution of nanometer-scale pore types. In: Electron Microscopy of Shale Hydrocarbon Reservoirs(Camp, W. K., Diaz, E., Wawak, B., eds.). American Association of Petroleum Geologists, Tulsa, OK, U.S.A., 2013, AAPG Memoir 102, 101–113. 
http://doi.org/10.1306/13391708M1023586

20. Rine, J. M., Smart, E., Dorsey, W., Hooghan, K., Dixon, M. Comparison of porosity distribution within selected North American shale units by SEM examination of argon-ion-milled samples. In: Electron Microscopy of Shale Hydrocarbon Reservoirs (Camp, W. K., Diaz, E., Wawak, B., eds.). American Association of Petroleum Geologists, Tulsa, OK, U.S.A., 2013, AAPG Memoir 102, 137–152. 
http://doi.org/10.1306/13391710M1023588

21. Schieber, J. SEM observations on ion-milled samples of Devonian black shales from Indiana and New York: The petrographic context of multiple pore types. In: Electron Microscopy of Shale Hydrocarbon Reservoirs (Camp, W. K., Diaz, E., Wawak, B., eds.). American Association of Petroleum Geologists, Tulsa, OK, U.S.A., 2013, AAPG Memoir 102, 153–171. 
http://doi.org/10.1306/13391711M1023589

22. Zhang, H. Research on Oil Shale Resource Evaluation and Evaluation Methods in Northern of Northeast China. PhD thesis. Jilin University, China, 2008 (in Chinese).

23. Liu, Z., Yang, H., Dong, Q., Zhu, J., Guo, W. Oil Shale in China. Petroleum Industry Press, Beijing, 2009 (in Chinese with English abstract).

24. Feng, Z.,  Jia, C., Xie, X., Zhang, S., Feng, Z., Cross, T. A. Tectonostrati-graphic units and stratigraphic sequences of the nonmarine Songliao basin, northeast China. Basin Res., 2010, 22(1), 79–95. 
http://doi.org/10.1111/j.1365-2117.2009.00445.x

25. Niu, J., Yu, W., Wang, Z., Luo, Y., Gong, F., Wang, Y. Sedimentary characteristics of oil shale of Qingshankou Formation, lower Cretaceous system in the Songliao Basin, Jilin Province. Jilin Geology, 2010, 29(2), 71–73 (in Chinese with English abstract).

26. Zhang, H., Liu, Z., Shi, J., Meng, Q. Formation characteristics of oil shale in the Lower Cretaceous Dalazi Formation in the Luozigou basin. Geol. China, 2007, 34(1), 86–91 (in Chinese with English abstract).

27. O’Brien, N. R., Slatt, R. M. Argillaceous Rock Atlas. Springer-Verlag, 1990. 
http://doi.org/10.1007/978-1-4612-3422-7

28. Milliken, K. L., Olson, T. Amorphous and crystalline solids as artifacts in SEM images. In: Imaging Unconventional Reservoir Pore Systems (Olson, T., ed.). American Association of Petroleum Geologists, Tulsa, OK, U.S.A., 2016, AAPG Memoir 112, 1–8. 
https://doi.org/10.1306/13592013M1122252

29. Loucks, R. G., Reed, R. M. Scanning-electron-microscope petrographic evidence for distinguishing organic matter pores associated with depositional organic matter versus migrated organic matter in mudrocks. GCAGS Journal, 2014, 3, 51–60.

30. Wilson, R. D., Schieber, J. The influence of primary and secondary sedimentary features on reservoir quality: Examples from the Geneseo Formation of New York, U.S.A. In: Imaging Unconventional Reservoir Pore Systems (Olson, T., ed.). American Association of Petroleum Geologists, Tulsa, OK, U.S.A., 2016, AAPG Memoir 112, 167–184. 
https://doi.org/10.1306/13592021M1123697

31. Slatt, R. M., O’Brien, N. R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull., 2011, 95(12), 2017–2030. 
https://doi.org/10.1306/03301110145

32. Slatt, R. M., O’Brien, N. R. Microfabrics related to porosity development, sedimentary and diagenetic processes, and composition of unconventional resource shale reservoirs as determined by conventional scanning electron microscopy. In: Electron Microscopy of Shale Hydrocarbon Reservoirs (Camp, W. K., Diaz, E., Wawak, B., eds.). American Association of Petroleum Geologists, Tulsa, OK, U.S.A., 2013, AAPG Memoir 102, 37–44. 
http://doi.org/10.1306/13391703M102441

33. Yu, Y., Liang, W., Bi, J., Geng, Y., Kang, Z., Zhao, Y. Thermophysical experiment and numerical simulation on thermal cracking of oil shale at high temperature. Chin. J. Rock Mech. Eng., 2015, 34(6), 1106–1115 (in Chinese with English abstract). 
https://doi.org/10.13722/j.cnki.jrme.2014.0953

34. Gabova, A., Chekhonin, E., Popov, Y., Savelev, E., Romushkevich, R., Popov, E., Kozlova, E. Experimental investigation of thermal expansion of organic-rich shales. Int. J. Rock Mech. Min. Sci., 2020, 132, 104398. 
https://doi.org/10.1016/j.ijrmms.2020.104398

35. Zhu, Y., Liu, K., Zhong, X., Wang, Y., Chen, C., Zhang, H., Pan, D., Zhai, L., Gao, S. Experimental investigation on the anisotropic behaviors induced by bedding planes in mechanical properties of Ma′quan oil shale. Arab. J. Sci. Eng., 2022, 47, 11385–11403. 
https://doi.org/10.1007/s13369-021-06027-2

36. Sun, P. Environmental Dynamics of Organic Accumulation in the Oil Shale Bearing Layers in the Upper Cretaceous, Southeast Songliao Basin (NE China). PhD thesis. Jilin University, China, 2013 (in Chinese).

37. Chen, M., Cheng, Y., Li, W. Exploitation and utilization of oil shale in the coal measure strata of the Haishiwan mine, Yaojie coalfield, China. Oil Shale, 2015, 32(4), 335–355. 
http://doi.org/10.3176/oil.2015.4.04

38. Loucks, R. G., Reed, R. M. Natural microfractures in unconventional shale-oil and shale-gas systems: Real, hypothetical, or wrongly defined? GCAGS Journal, 2016, 5, 64–72.

39. Mastalerz, M., Schieber, J. Effect of ion milling on the perceived maturity of shale samples: Implications for organic petrography and SEM analysis. Int. J. Coal Geol., 2017, 183, 110–119. 
http://doi.org/10.1016/j.coal.2017.10.010

40. Schieber, J. Shale microfabrics and pore development – an overview with emphasis on the importance of depositional processes. In: Gas Shale of the Horn River basin (Leckie, D. A., Barclay, J. E. eds.). Canadian Society of Petroleum Geologists, Calgary, Canada, 2011, 115–119.

41. Erdman, N., Drenzek, N. Integrated preparation and imaging techniques for the microstructural and geochemical characterization of shale by scanning electron microscopy. In: Electron Microscopy of Shale Hydrocarbon Reservoirs(Camp, W. K., Diaz, E., Wawak, B., eds.). American Association of Petroleum Geologists, Tulsa, OK, U.S.A., 2013, AAPG Memoir 102, 7–14. 
http://doi.org/10.1306/13391700M1023581

42. Reed, R. M., Loucks, R. G. Low-thermal-maturity (<0.7% VR) mudrock pore systems: Mississippian Barnett Shale, southern Fort Worth Basin. GCAGS Journal, 2015, 4, 15–28.

43. Berner, R. A. Sedimentary pyrite formation: An update. Geochim. Cosmochim. Acta, 1984, 48(4), 605–615. 
https://doi.org/10.1016/0016-7037(84)90089-9

44. Bernard, S., Bowen, L., Wirth, R., Schreiber, A., Schulz, H-M., Horsfield, B., Aplin, A. C., Mathia, E. J. FIB-SEM and TEM investigations of an organic-rich shale maturation series from the Lower Toarcian Posidonia Shale, Germany: Nanoscale pore system and fluid-rock interactions. In: Electron Microscopy of Shale Hydrocarbon Reservoirs (Camp, W. K., Diaz, E., Wawak, B., eds.). American Association of Petroleum Geologists, Tulsa, OK, U.S.A., 2013, AAPG Memoir 102, 53–66. 
http://doi.org/10.1306/13391705M1023583

Back to Issue