This study evaluates the possibilities to produce new materials, starting from Moroccan oil shales, for different applications. More specifically, the authors aimed to demonstrate that the organic fraction of the oil shales could be used as a precursor of carbon foams and graphitizable carbons, after appropriate chemical treatments resulting in the “maturation” of this organic phase. First, the researchers studied the optimization of experimental conditions and the identification of various parameters influencing the yield and composition of oils obtained by the supercritical extraction of Moroccan oil shale. The effect of various experimental parameters, such as mineral matter, thermal treatment temperature (T), treatment duration (t) and solvent type, was studied. The experimental results obtained show clearly that the organic matter contained in the Moroccan Tarfaya oil shale (sub-layer R3 ) can be recovered by phenol under the following optimal conditions: T = 390 °C, t = 2.5 hours using phenol as a solvent with an amount of 15 g for each 10 g of sub-layer R3 carbonate-free oil shale (RH). The results reveal that the yield and composition of the oil obtained by extraction with phenol is markedly different from those obtained by extraction with toluene, quinoline or without solvent. Furthermore, the phenol has a very significant role in increasing the recovery yield and the degree of maturation of the obtained oil. It was shown that phenol was a suitable extraction solvent to produce graphitizable carbon at a relatively low temperature, below 1800 °C.
1. Apak, E., Yardim, M. F., Ekinci, E. Preparation of carbon fibre precursors from the pyrolysis and copyrolysis of Avgamasya asphaltite and Göynük oil shale: vacuum distillation and hexane extraction. Carbon, 2002, 40(8), 1331–1337.
https://doi.org/10.1016/S0008-6223(01)00296-2
2. Yanik, J., Yüksel, M., Saǧlam, M., Olukçu, N., Bartle, K., Frere, B. Characterization of the oil fractions of shale oil obtained by pyrolysis and supercritical water extraction. Fuel, 1995, 74(1), 46–50.
https://doi.org/10.1016/0016-2361(94)P4329-Z
3. Jiang, X. M., Han, X. X., Cui, Z. G. New technology for the comprehensive utilization of Chinese oil shale resources. Energy, 2007, 32(5), 772–777.
https://doi.org/10.1016/j.energy.2006.05.001
4. Jaber, J. O., Probert, S. D. Exploitation of Jordanian oil-shales. Appl. Energy, 1997, 58(2–3), 161–175.
https://doi.org/10.1016/S0306-2619(97)00041-X
5. Ministry of Energy and Mines Division of Energy. Morocco–United States Oil Shale Colloquium. Rabat, Morocco, 3–10 October 1980.
6. Abourriche, A., Oumam, M., Mouhssim, A., Dahiri, M., Hannache, H., Chollon, G., Pailler, R., Naslain, R., Birot, M., Pillot, J.-P. New pitches enhanced graphitization ability obtained from Moroccan oil shale. J. Anal. Appl. Pyrolysis, 2004, 71(2), 935–944.
https://doi.org/10.1016/j.jaap.2003.12.004
7. Abourriche, A., Adil, A., Oumam, M., Hannache, H., Pailler, R., Naslain, R., Birot, M., Pillot, J.-P. New pitches with very significant maturation degree obtained by supercritical extraction of Moroccan oil shale. J. Supercrit. Fluids, 2008, 47(2), 195–199.
https://doi.org/10.1016/j.supflu.2008.07.016
8. Galindo, C., Mougin, L., Fakhi, S., Nourreddine, A., Lamghari, A., Hannache, H. Distribution of naturally occurring radionuclides (U, Th) in Timahdit black shale (Morocco). J. Environ. Radioact., 2007, 92(1), 41–54.
https://doi.org/10.1016/j.jenvrad.2006.09.005
9. Akar, A., Ekinci, E. Production of chemicals from oil shales. Fuel, 1995, 74(8), 1113–1117.
https://doi.org/10.1016/0016-2361(95)00070-L
10. Abourriche, A., Oumam, M., Hannache, H., Adil, A., Pailler, R., Naslain, R., Birot, M., Pillot, J.-P. Effect of toluene proportion on the yield and composition of oils obtained by supercritical extraction of Moroccan oil shale. J. Supercrit. Fluids, 2009, 51(1), 24–28.
https://doi.org/10.1016/j.supflu.2009.07.003
11. El harfi, K., Mokhlisse, A., Ben Chanâa, M. Yields and composition of oil obtained by isothermal pyrolysis of the Moroccan (Tarfaya) oil shales with steam or nitrogen as carrier gas. J. Anal. Appl. Pyrolysis, 2000, 56(2), 207–218.
https://doi.org/10.1016/S0165-2370(00)00095-4
12. Abourriche, A. K., Oumam, M., Hannache, H., Birot, M., Abouliatim, Y., Benhammou, A., El Hafiane, Y., Abourriche, A. M., Pailler, R., Naslain, R. Comparative studies on the yield and quality of oils extracted from Moroccan oil shale. J. Supercrit. Fluids, 2013, 84, 98–104.
https://doi.org/10.1016/j.supflu.2013.09.018
13. Lanças, F. M., Rissato, S. R. Influence of temperature, pressure, modifier, and collection mode on supercritical CO2extraction efficiencies of Diuron from sugar cane and orange samples. J. Microcolumn sep., 1998, 10(6), 473–478.
https://doi.org/10.1002/(SICI)1520-667X(1998)10:6<473::AID-MCS2>3.0.CO;2-D
14. Dariva, C., Oliveira, J. V., Vale, M. G. R, Caramao, E. B. Supercritical fluid extraction of a high-ash Brazilian coal: Extraction with pure ethanol and isopropanol and their aqueous solutions. Fuel, 1997, 76(7), 585–591.
https://doi.org/10.1016/S0016-2361(97)00060-4
15. Björnbom, P., Björnbom, E. Material losses in liquefaction of raw peat with carbon monoxide. Fuel, 1987, 66(6), 779–784.
https://doi.org/10.1016/0016-2361(87)90124-4
16. Cavalier, J.-C., Chornet, E. Fractionation of peat-derived bitumen into oil and asphaltenes. Fuel, 1978, 57(5), 304–308.
https://doi.org/10.1016/0016-2361(78)90009-1
17. Bekri, O., Ziyad, M. Synthesis of oil shale research and development activities in Morocco. In: Institute of Mining and Minerals Research (Ed.). Proceedings of the 1991 Eastern Oil Shale Symposium, Lexington, Kentucky, USA, 1991, 437–443.
18. Velts, O., Uibu, M., Kallas, J., Kuusik, R. Waste oil shale ash as a novel source of calcium for precipitated calcium carbonate: Carbonation mechanism, modeling, and product characterization. J. Hazard. Mater., 2011, 195, 139–146.
https://doi.org/10.1016/j.jhazmat.2011.08.019
19. Miao, L., Ji, G., Gao, G., Li, G., Gan, S. Extraction of alumina powders from the oil shale ash by hydrometallurgical technology. Powder Technol., 2011, 207(1–3), 343–347.
https://doi.org/10.1016/j.powtec.2010.11.017
20. Sun, T., Liu, L. L., Wan, L. L., Zhang, Y. P. Effect of silicon dose on preparation and coagulation performance of poly-ferric-aluminum-silicate-sulfate from oil shale ash. Chem. Eng. J., 2010, 163(1–2), 48–54.
https://doi.org/10.1016/j.cej.2010.07.037
21. Gao, G. M., Miao, L. N., Ji, G. J., Zou, H. F., Gan, S. C. Preparation and characterization of silica aerogels from oil shale ash. Mater. Lett., 2009, 63(30), 2721–2724.
https://doi.org/10.1016/j.matlet.2009.09.053
22. Machado, N. R. C. F., Miotto, D. M. M. Synthesis of Na-A and -X zeolites from oil shale ash. Fuel, 2005, 84(18), 2289–2294.
https://doi.org/10.1016/j.fuel.2005.05.003
23. Al-Qodah, Z., Shawaqfeh, A. T., Lafi, W. K. Adsorption of pesticides from aqueous solutions using oil shale ash. Desalination, 2007, 208(1–3), 294–305.
https://doi.org/10.1016/j.desal.2006.06.019
24. Oumam, M., Abourriche, A., Mansouri, S., Mouiya, M., Benhammou, A., Abouliatim, Y., El Hafiane, Y., Hannache, H., Birot, M., Pailler, R., Naslain, R. Comparison of chemical and physical activation processes at obtaining adsorbents from Moroccan oil shale. Oil Shale, 2020, 37(2), 139–157.
https://doi.org/10.3176/oil.2020.2.04
25. Yürüm, Y., Kramer, R., Levy, M. Interaction of kerogen and mineral matrix of an oil shale in an oxidative atmosphere. Thermochim. Acta, 1985, 94(2), 285–293.
https://doi.org/10.1016/0040-6031(85)85272-2
26. Rose, H. R., Smith, D. R., Vassallo, A. M. An investigation of thermal trans-formations of the products of oil shale demineralization using infrared emission spectroscopy. Energy Fuels, 1993, 7(2), 319–325.
https://doi.org/10.1021/ef00038a024
27. Abourriche, A., Oumam, M., Hannache, H., Pailler, R., Naslain, R., Birot, M., Pillot, J.-P. Autoclave recovery of organic matter from Moroccan oil shales by phenol under sub-critical conditions. Ann. Chim. Sci. Mater., 2005, 30(1), 1–17.
https://doi.org/10.3166/acsm.30.1-17
28. Suatoni, R., Swab, R. E. Preparative hydrocarbon compound type analysis by high performance liquid chromatography J. Chromatogr. Sci., 1976, 14(11), 535–537.
https://doi.org/10.1093/chromsci/14.11.535
29. Tissot, B., Deroo, G., Hood. A. Geochemical study of the Uinta Basin: formation of petroleum from the Green River formation. Geochim. Cosmochim. Acta, 1978, 42(10), 1469–1485.
https://doi.org/10.1016/0016-7037(78)90018-2
30. Abourriche, A. K., Oumam, M., Mansouri, S., Mouiya, M., Rakcho, Y., Benhammou, A., Abouliatim, Y., Alami, J., Hannache, H. Effect of processing conditions on the improvement of properties and recovering yield of Moroccan oil shale. Oil Shale, 2022, 39(1), 61–78.
https://doi.org/10.3176/oil.2022.1.04
31. El harfi, K., Bennouna, C., Mokhlisse, A., Ben chanâa, M., Lemée, L., Joffre, J., Amblès, A. Supercritical fluid extraction of Moroccan (Timahdit) oil shale with water. J. Anal. Appl. Pyrolysis, 1999, 50(2), 163–174.
https://doi.org/10.1016/S0165-2370(99)00028-5
32. Canel, M., Missal, P. Extraction of solid fuels with sub- and supercritical water. Fuel, 1994, 73(11), 1776–1780.
https://doi.org/10.1016/0016-2361(94)90167-8
33. Ali Mansoori, G. Remediation of asphaltene and other heavy organic deposits in oil wells and in pipelines. Socar Proceedings, 2010, 4, 12–23. ISSN: 2218-6867
34. Angell, C. L., Lewis, I. C. Raman spectroscopy of mesophase pitches. Carbon, 1978, 16(6), 431–432.
https://doi.org/10.1016/0008-6223(78)90088-X
35. Cuesta, A., Dhamelincourt, P., Laureyns, J., Martínez-Alonso, A., Tascón, J. M. D. Raman microprobe studies on carbon materials. Carbon, 1994, 32(8), 1523–1532.
https://doi.org/10.1016/0008-6223(94)90148-1
36. Nathan, M. I., Smith Jr., J. E., Tu, K. N. Raman spectra of glassy carbon. J. Appl. Phys., 1974, 45(5), 2730–2731.
https://doi.org/10.1063/1.1663599
37. Lespade, P., Marchand, A., Couzi, M., Cruege, F. Characterization of carbon materials by Raman microspectrometry. Carbon, 1984, 22(4–5), 375–385 (in France).
https://doi.org/10.1016/0008-6223(84)90009-5
38. Tuinstra, F., Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys., 1970, 53(3), 1126–1130.
https://doi.org/10.1063/1.1674108
39. Johnson, C. A., Patrick, J. W., Thomas, K. M. Characterization of coal chars by Raman spectroscopy, X-ray diffraction and reflectance measurements. Fuel, 1986, 65(9), 1284–1290.
https://doi.org/10.1016/0016-2361(86)90243-7
40. Ergun, S., Schehl, R. R. Analysis of the structure of a glassy carbon using the fourier transform technique. Carbon, 1973, 11(2), 127–138.
https://doi.org/10.1016/0008-6223(73)90063-8