1. Qian, J., Wang, J. World oil shale retorting technologies // Int. Conf. on Oil Shale: ⌠Recent Trends in Oil Shale, 7–9 November 2006, Amman, Jordan, Paper No. A-118.
2. Fainberg, V., Hetsroni, G. Oil shale as an energy source in Israel // Energ. Source. 1996. Vol. 18, No. 1. P. 95–105.
doi:10.1080/00908319608908750
3. Golubev, N. Solid heat carrier technology for oil shale retorting // Oil Shale. 2003. Vol. 20, No. 3S. P. 324–332.
4. Brendow, K. Global oil shale issues and perspectives // Oil Shale. 2003. Vol. 20, No. 1. P. 81–92.
5. Soone, J., Doilov, S. Sustainable utilization of oil shale resources and comparison of contemporary technologies used for oil shake processing // Oil Shale. 2003. Vol. 20, No. 3. P. 311–323.
6. Zhao, Y. H., He, Y. G. Utilization of retort gas as fuel for internal combustion engine for producing power // Oil Shale. 2005. Vol. 22, No. 1. P. 21–24.
7. Jiang, X. M., Han, X. X., Cui, Z. G. Progress and recent utilization trends in combustion of Chinese oil shale // Prog. Energ. Combust. 2007. Vol. 33, No. 6. P. 552–579.
doi:10.1016/j.pecs.2006.06.002
8. Russell, P. L. Oil Shales of the World: Their Origin, Occurrence, and Exploitation. – Oxford: Pergamon Press, 1990.
9. Abu-Qudais, M., Al-Widyan, M. I. Performance and emissions characteristics of a diesel engine operating on shale oil // Energ. Convers. Manage. 2002. Vol. 43, No. 5. P. 673–682.
doi:10.1016/S0196-8904(01)00064-4
10. Akar, A., Ekinci, E. Production of chemicals from oil shales // Fuel. 1995. Vol. 74, No. 8. P. 1113–1117.
11. Jaber, J. O., Probert, S. D., Williams, P. T. Evaluation of oil yield from Jordanian oil shales // Energy. 1999. Vol. 24, No. 9. P. 761–781.
12. Aboulkas, A., El Harfi, K., El Bouadili, A. Kinetic and mechanism of Tarfaya (Morocco) oil shale and LDPE mixture pyrolysis // J. Mater. Process. Tech. 2008. Vol. 206, No. 1–3. P. 16–24.
doi:10.1016/j.jmatprotec.2007.11.282
13. Johannes, I., Zaidentsal, A. Kinetics of low-temperature retorting of kukersite oil shale // Oil Shale. 2008. Vol. 25, No. 4. P. 412–425.
14. Olukcu, N., Yanik, J., Saglam, M., Yuksel, M. Liquefaction of Beypazari oil shale by pyrolysis // J. Anal. Appl. Pyrol. 2002. Vol. 64, No.1. P. 29–41.
doi:10.1016/S0165-2370(01)00168-1
15. Udaja, P., Duffi, G. J., Chensee, M. D. Coking reactivities of Australian shale oils // Fuel. 1990. Vol. 69, No. 9. P. 1150–1154.
16. Khraisha, Y. H. Flash pyrolysis of oil shales in fluidized bed reactor // Energ. Convers. Manage. 2000. Vol. 41, No. 16. P. 1729–1739.
doi:10.1016/S0196-8904(00)00014-5
17. Lille, Ü., Heinmaa, I., Pehk, T. Molecular model of Estonian kukersite kerogen evaluated by 13C MAS NMR spectra // Fuel. 2003. Vol. 82, No. 7. P. 799–804.
18. Kiselev, A. V., Yashin, Ya. I. Gas-Adsorption Chromatography. – New York: Plenum Press, 1969.
19. Preparative Liquid Chromatography / B. A. Bidlingmeyer (ed). – Amsterdam: Elsevier, 1987.
20. Vandenbroucke, M., Largeau, C. Kerogen origin, evolution and structure // Org. Geochem. 2007. Vol. 38, No. 5. P. 719–833.
doi:10.1016/j.orggeochem.2007.01.001
21. Riboulleau, A., Derenne, S., Sarret, G., Largeau, C., Baudin, F., Connan, J. Pyrolytic and spectroscopic study of a sulphur-rich kerogen from “Kashpir oil shales”(Upper Jurassic, Russian platform) // Org. Geochem. 2000. Vol. 31, No. 12. P. 1641–1661.
doi:10.1016/S0146-6380(00)00088-7
22. Ganz, H., Kalkreuth, W. Application of infrared spectroscopy to the classification of kerogen types and the evaluation of source rock and oil shale potentials // Fuel. 1987. Vol. 66, No. 5. P. 708–711.
23. Derenne, S., Largeau, C., Casadevall, E., Sinninghe Damste, J. S., Tegelaar, E. W., de Leeuw, J. W. Characterization of Estonian Kukersite by spectroscopy and pyrolysis: Evidence for abundant alkyl phenolic moieties in an Ordovician, marine, type II/I kerogen // Org. Geochem. 1990. Vol. 16, No. 4–6. P. 873–888.
doi:10.1016/0146-6380(90)90124-I
24. Bajc, S., Ambles, A., Largeau, C., Derenne, S., Vitorović, D. Precursor biostructures in kerogen matrix revealed by oxidative degradation: oxidation of kerogen from Estonian kukersite // Org. Geochem. 2001. Vol. 32, No. 6. P. 773–784.
doi:10.1016/S0146-6380(01)00042-0
25. Mastalerz, M., Schimmelmann, A., Hower, J. C., Lis, G., Hatch, J., Jacobson, S. R. Chemical and isotopic properties of kukersites from Iowa and Estonia // Org. Geochem. 2003. Vol. 34, No. 10. P. 1419–1427.
doi:10.1016/S0146-6380(03)00138-4
26. Miknis, F. P., Turner, T. F. The bitumen intermediate in isothermal and nonisothermal decomposition of oil shales // Composition, Geochemistry and Conversion of Oil Shales / C. Snape (ed.). Dordrecht: Kluwer Academic Publishers, 1995. P. 295–311.
27. Gerasimov, G. Ya. Modeling of the process of pyrolysis of oil shale particles // J. Eng. Phys. Thermophys. 2003. Vol. 76, No. 6. P. 1310–1317.
doi:10.1023/B:JOEP.0000012036.11199.7b
28. Karabakan, A., Yürüm, Y. Effect of the mineral matrix in the reactions of oil shales: 1. Pyrolysis reactions of Turkish Göynük and US Green River oil shales // Fuel. 1998. Vol. 77, No. 12. P. 1303–1309.
29. Torrente, M. C., Galán, M. A. Kinetics of the thermal decomposition of oil shale from Puertollano (Spain) // Fuel. 2001. Vol. 80, No. 3. P. 327–334.
30. Li, S., Yue, C. Study of pyrolysis kinetics of oil shale // Fuel. 2003. Vol. 82, No. 3. P. 337–342.
31. Aboulkas, A., El Harfi, K. Study of the kinetics and mechanisms of the thermal decomposition of Moroccan Tarfaya oil shale and its kerogen // Oil Shale. 2008. Vol. 25, No. 4. P. 426–443.
32. Skala, D., Kopsen, H., Sokić, M., Neumann, H.-J., Jovanović, J. Modelling and simulation of oil shale pyrolysis // Fuel. 1989. Vol. 68, No. 2. P. 168–173.
33. Khraisha, Y. H.Kinetics of isothermal pyrolysis of Jordan oil shale // Energ. Convers. Manage. 1998. Vol. 39, No. 3–4. P. 157–165.
doi:10.1016/S0196-8904(96)00230-0
34. Skala, D., Kopsen, H., Sokić, M., Neumann, H.-J., Jovanović, J. A. Kinetics and modelling of oil shale pyrolysis // Fuel. 1990. Vol. 69, No. 4. P. 490–496.
35. Jaber, J. O., Probert, S. D. Pyrolysis and gasification kinetics of Jordanian oil-shales // Appl. Energ. 1999. Vol. 63, No. 4. P. 269–286.
36. Behar, F., Kressmann, S., Rudkiewicz, J. L., Vandenbroucke, M. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking // Org. Geochem. 1992. Vol. 19, No. 1–3. P. 173–189.
doi:10.1016/0146-6380(92)90035-V
37. Tegelaar, E. W., Noble, R. A. Kinetics of hydrocarbon generation as a function of the molecular structure of kerogen as revealed by pyrolysis-gas chromatography // Org. Geochem. 1994. Vol. 22, No.3–5. P. 543–574.
doi:10.1016/0146-6380(94)90125-2
38. Behar, F., Vandenbroucke, M., Tang, Y., Marquis, F., Espitalie, J. Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation // Org. Geochem. 1997. Vol. 26, No. 5–6. P. 321–339.
doi:10.1016/S0146-6380(97)00014-4
39. Solomon, P. R., Serio, M. A., Suuberg, E. M.Coal pyrolysis: experiments, kinetic rates and mechanisms // Prog. Energ. Combust. 1992. Vol. 18, No. 2. P. 133–220.
doi:10.1016/0360-1285(92)90021-R
40. Gerasimov, G. Ya., Pogosbekyan, Yu. M. Investigation of gas release from molds // J. Eng. Phys. Thermophys. 2007. Vol. 80, No. 3. P. 545–554.
doi:10.1007/s10891-007-0072-2
41. Zou, R., Lou, Q., Mo, S., Feng, S.Study on a kinetic model of atmospheric gas oil pyrolysis and coke deposition // Ind. Eng. Chem. Res. 1993. Vol. 32, No. 5. P. 843–847.
doi:10.1021/ie00017a011
doi:10.1021/ie00100a005