A review of literature data on the processing of solid types of combustible fossils into liquid fuels and chemical products has been carried out. The reserves of solid fossil fuels far exceed the natural resources of oil and gas, so the development of methods for processing solid fossil fuels into chemical products and liquid fuels is an urgent task. The main methods of processing coal and oil shale (OS) are reduced to pyrolysis and supercritical gasification. Pyrolysis is preferred for processing oil shale into shale oil, and currently a promising method for processing coal is extraction with supercritical solvents such as water and CO2 at temperatures up to 900 °C and in some cases with the addition of a catalyst. For oil shale, the gasification process, like pyrolysis, is carried out under milder conditions, since the mineral part of oil shale contains trace elements that act as catalysts, and the structure of the organic part of oil shale is more similar in composition to oil.
1. Statistical Review of World Energy, 2020, 69th edition. Bp, 1–66.
2. World Energy Council. World Energy Resources, 2016.
3. Shinn, J. H. From coal to single-stage and two-stage products: A reactive model of coal structure. Fuel, 1984, 63(9), 1187–1196.
https://doi.org/10.1016/0016-2361(84)90422-8
4. Lille, Ü., Heinmaa, I., Pehk, T. Molecular model of Estonian kukersite kerogen evaluated by 13C MAS NMR spectra. Fuel, 2003, 82(7), 799–804.
https://doi.org/10.1016/S0016-2361(02)00358-7
5. Estonian Oil Shale Industry Yearbook 2019 (Oone, A., Ed.), 2020, 1–66.
6. Li, S. The developments of Chinese oil shale activities. Oil Shale, 2012, 29(2), 101–102.
https://doi.org/10.3176/oil.2012.2.01
7. Chen, A. Petro China´s Gulong Shale Project May Bolster China´s Oil Output.
https://www.reuters.com/business/energy/petrochinas-gulong-shale-project-may-bolster-chinas-oil-output-2021-09-30/
8. Thomson, E. The Chinese Coal Industry: An Economic History. Routledge, London, 2002.
https://doi.org/10.4324/9780203221655
9. Dyni, J. R. 2004 Survey of Energy Resources. Oil Shale, 2004, 73–91.
https://doi.org/10.1016/B978-008044410-9/50007-3
10. Perry, H. Coal conversion technology. Chem. Eng., 1974, 81(15), 88–102.
11. White, L. C., Frederick, J. P. ENCOAL mild coal gasification project. In: Proceedings of the 12th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 11–15 Sep 1995, 151–156.
12. U.S. Department of Energy, National Energy Technology Laboratory. The ENCOAL® Mild Coal Gasification Project. A DOE Assessment. DOE/NETL-2002/1171.
https://doi.org/10.2172/815172
13. Wu, J., Liu, Q., Wang, R., He, W., Shi, L., Guo, X., Chen, Z., Ji, L., Liu, Z. Coke formation during thermal reaction of tar from pyrolysis of a subbituminous coal. Fuel Process. Technol., 2017, 155, 68–73.
https://doi.org/10.1016/j.fuproc.2016.03.022
14. Solomon, P. R., Serio, M. A., Suuberg, E. M. Coal pyrolysis: Experiments, kinetic rates and mechanisms. Prog. Energy Combust. Sci., 1992, 18(2), 133–220.
https://doi.org/10.1016/0360-1285(92)90021-R
15. Geng, C., Li, S., Yue, C., Ma, Y. Pyrolysis characteristics of bituminous coal. J. Energy Inst., 2016, 89(4), 725–730.
https://doi.org/10.1016/j.joei.2015.04.004
16. Lei, Z., Yang, D., Zhang, Y.-H., Cui, P. Constructions of coal and char molecular models based on the molecular simulation technology. J. Fuel Chem. Technol., 2017, 45(7), 769–779.
https://doi.org/10.1016/S1872-5813(17)30038-5
17. Solomon, P. R., Fletcher, T. H., Pugmire, R. J. Progress in coal pyrolysis. Fuel, 1993, 72(5), 587–597.
https://doi.org/10.1016/0016-2361(93)90570-R
18. Liu, X., Cui, P., Ling, Q., Zhao, Z., Xie, R. A review on co-pyrolysis of coal and oil shale to produce coke. Front. Chem. Sci. Eng., 2020, 14(4), 504–512.
https://doi.org/10.1007/s11705-019-1850-z
19. Speight, J. G. Mining and retorting. Shale Oil and Gas Production Processes. Gulf Professional Publishing, 2019, 797–847.
https://doi.org/10.1016/B978-0-12-813315-6.00014-2
20. Speight, J. In situ retorting. Shale Oil and Gas Production Processes. Gulf Professional Publishing, 2019, 849–871.
https://doi.org/10.1016/B978-0-12-813315-6.00015-4
21. Qian, J., Wang, J. World oil shale retorting technologies. In: Int. Conf. on Oil Shale: Recent Trends in Oil Shale, 7–9 November 2006, Amman, Jordan, 7–9.
22. Qian, J. L., Yin, L., Wang, J., Li, S., Han, F., He, Y. Oil shale – Supplementary Energy of Petroleum. Beijing: China Petrochemical Press, 2011.
23. Zheng, D., Li, S., Ma, G., Wang, H. Autoclave pyrolysis experiments of Chinese Liushuhe oil shale to simulate in-situ underground thermal conversion. Oil Shale, 2012, 29(2), 103–114.
https://doi.org/10.3176/oil.2012.2.02
24. Korb, J.-P., Nicot, B., Louis-Joseph, A., Bubici, S., Ferrante, G. Dynamics and wettability of oil and water in oil shales. J. Phys. Chem. C, 2014, 118(40), 23212–23218.
https://doi.org/10.1021/jp508659e
25. Guo, S., Ruan, Z. The composition of Fushun and Maoming shale oils. Fuel, 1995, 74(11), 1719–1721.
https://doi.org/10.1016/0016-2361(95)00137-T
26. Shi, Y., Li, S., Ma, Y., Yue, C., Shang, W., Hu, H., He, J. Pyrolysis of Yaojie oil shale in a Sanjiang-type pilot-scale retort. Oil Shale, 2012, 29(4), 368–375.
https://doi.org/10.3176/oil.2012.4.07
27. Cao, X., Birdwell, J. E., Chappell, M. A., Li, Y., Pignatello, J. J., Mao, J. Charac—terization of oil shale, isolated kerogen, and postpyrolysis residues using advanced 13C solid-state nuclear magnetic resonance spectroscopy. AAPG Bull., 2013, 97(3), 421–436.
https://doi.org/10.1306/09101211189
28. Alstadt, K. N., Katti, D. R., Katti, K. S. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale. Spectrochim. Acta A, 2012, 89, 105–113.
https://doi.org/10.1016/j.saa.2011.10.078
29. Ma, Y., Li, S. The mechanism and kinetics of oil shale pyrolysis in the presence of water. Carbon Resour. Convers., 2018, 1(2), 160–164.
https://doi.org/10.1016/j.crcon.2018.04.003
30. Qian, J., Wang, J., Li, S. World oil shale. Energy of China, 2006, 28(8), 16–19 (in Chinese).
31. Külaots, I., Goldfarb, J. L., Suuberg, E. M. Characterization of Chinese, American and Estonian oil shale semicokes and their sorptive potential. Fuel, 2010, 89(11), 3300–3306.
https://doi.org/10.1016/j.fuel.2010.05.025
32. Han, X., Kulaots, I., Jiang, X., Suuberg, E. M. Review of oil shale semicoke and its combustion utilization. Fuel, 2014, 126, 143–161.
https://doi.org/10.1016/j.fuel.2014.02.045
33. Allred, V. D. Shale oil developments: Kinetics of oil shale pyrolysis. Chem. Eng. Prog., 1966, 62(8), 50–60.
34. Campbell, J. H., Gallegos, G., Gregg, M. Gas evolution during oil shale pyrolysis. 2. Kinetic and stoichiometric analysis. Fuel, 1980, 59(10), 727–732.
https://doi.org/10.1016/0016-2361(80)90028-9
35. Campbell, J. H., Koskinas, G. J., Gallegos, G., Gregg, M. Gas evolution during oil shale pyrolysis. 1. Nonisothermal rate measurements. Fuel, 1980, 59(10), 718–726.
https://doi.org/10.1016/0016-2361(80)90027-7
36. Yen, T. F., Chilingarian, G. V. Oil Shale. Developments in Petroleum Science, 5. Amsterdam: Elsevier, 1976.
37. Kang, Z., Zhao, Y., Yang, D. Review of oil shale in-situ conversion technology. Appl. Energy, 2020, 269, 115121.
https://doi.org/10.1016/j.apenergy.2020.115121
38. Kang, Z., Zhao, Y., Yang, D., Tian, L., Li, X. A pilot investigation of pyrolysis from oil and gas extraction from oil shale by in-situ superheated steam injection. J. Petrol. Sci. Eng., 2020, 186, 106785.
https://doi.org/10.1016/j.petrol.2019.106785
39. Gyulmaliev, A. M., Golovin, G. S., Gladun, T. G. Theoretical Foundations of Coal Chemistry. – Moscow: Publishing House of the Moscow State Mining University, 2003 (in Russian).
40. Ulanovskii, M. L. Chemical aspects of coal metamorphism and the formation of low-molecular volatiles. Coke and Chemistry, 2012, 55(12), 439–443.
https://doi.org/10.3103/S1068364X1212006X
41. Epshtein, S. A., Suprunenko, O. I., Barabanova, O. V. The material composition and reactivity of vitrinites of hard coals of various degrees of reduction. Solid Fuel Chemistry, 2005, 39(1), 19–31.
42. Makitra, R. G., Pristansky, Z. E. Dependence of the degree of swelling of coals on the physicochemical properties of solvents. Solid Fuel Chemistry, 2001, No. 5, 3–12 (in Russian).
43. Cao, Y., Han, H., Liu, H., Jia, J., Zhang, W., Liu, P., Ding, Z., Chen, S., Lu, J., Gao, Y. Influence of solvents on pore structure and methane adsorption capacity of lacustrine shales: An example from a Chang 7 shale sample in the Ordos Basin, China. J. Petrol. Sci. Eng., 2019, 178, 419–428.
https://doi.org/10.1016/j.petrol.2019.03.052
44. Butala, S. J. M., Medina, J. C., Hulse, R. J., Bartholomew, C. H., Lee, M. L. Pressurized fluid extraction of coal. Fuel, 2000, 79(13), 1657–1664.
https://doi.org/10.1016/S0016-2361(00)00025-9
45. Cao, Y., Han, H., Guo, C., Pang, P., Ding, Z., Gao, Y. Influence of extractable organic matters on pore structure and its evolution of Chang 7 member shales in the Ordos Basin, China: Implications from extractions using various solvents. J. Nat. Gas Sci. Eng., 2020, 79, 103370.
https://doi.org/10.1016/j.jngse.2020.103370
46. Liu, Y., Yan, L., Lv, P., Ren, L., Kong, J., Wang, J., Li, F., Bai, Y. Effect of n-hexane extraction on the formation of light aromatics from coal pyrolysis and catalytic upgrading. J. Energy Inst., 2020, 93(3), 1242–1249.
https://doi.org/10.1016/j.joei.2019.11.007
47. Doskočil, L., Enev, V., Pekař, M., Wasserbauer, J. The spectrometric charac-teri-zation of lipids extracted from lignite samples from various coal basins. Org. Geochem., 2016, 95, 34–40.
https://doi.org/10.1016/j.orggeochem.2016.02.008
48. Niu, Z., Liu, G., Yin, H., Zhou, C., Wu, D., Yousaf, B., Wang, C. Effect of pyridine extraction on the pyrolysis of a perhydrous coal based on in-situ FTIR analysis. J. Energy Inst., 2019, 92(3), 428–437.
https://doi.org/10.1016/j.joei.2018.05.005
49. Luo, A., Zhang, D., Zhu, P., Qu, X., Zhang, J.-L., Zhang, J.-S. Effect of pyridine extraction on the tar characteristics during pyrolysis of bituminous coal. J. Fuel Chem. Technol., 2017, 45(11), 1281–1288.
https://doi.org/10.1016/S1872-5813(17)30058-0
50. He, Y., Zhao, R., Yan, L., Bai, Y., Li, F. The effect of low molecular weight compounds in coal on the formation of light aromatics during coal pyrolysis. J. Anal. Appl. Pyrol., 2017, 123, 49–55.
https://doi.org/10.1016/j.jaap.2016.12.030
51. Zhang, S., Zhang, X., Hao, Z., Wang, Z., Lin, J., Liu, M. Dissolution behavior and chemical characteristics of low molecular weight compounds from tectonically deformed coal under tetrahydrofuran extraction. Fuel, 2019, 257, 116030.
https://doi.org/10.1016/j.fuel.2019.116030
52. Sönmez, Ö., Yıldız, Ö., Çakır, M. Ö., Gözmen, B., Giray, E. S. Influence of the addition of various ionic liquids on coal extraction with NMP. Fuel, 2018, 212, 12–18.
https://doi.org/10.1016/j.fuel.2017.10.017
53. Wei, L., Mastalerz, M., Schimmelmann, A., Chen, Y. Influence of Soxhlet-extractable bitumen and oil on porosity in thermally maturing organic-rich shales. Int. J. Coal Geol., 2014, 132, 38–50.
https://doi.org/10.1016/j.coal.2014.08.003
54. Kerst, M., Andersson, J. T. Microwave-assisted extraction of polycyclic aromatic compounds from coal. Fresenius J. Anal. Chem., 2001, 370(7), 970–972.
https://doi.org/10.1007/s002160100871
55. Sharma, D. K., Dhawan, H. Separative refining of coals through solvolytic extraction under milder conditions: A review. Ind. Eng. Chem. Res., 2018, 57(25), 8361–8380.
https://doi.org/10.1021/acs.iecr.8b00345
56. Rapoport, I. B. Artificial Liquid Fuel. Moscow: Publishing House of Petroleum and Mining-Fuel Literature, 1955 (in Russian).
57. Prat, D., Pardigon, O., Flemming, H.-W., Letestu, S., Ducandas, V., Isnard, P., Guntrum, E., Senac, T., Ruisseau, S., Cruciani, P., Hosek, P. Sanofi’s solvent selection guide: A step toward more sustainable processes. Org. Process Res. Dev., 2013, 17(12), 1517–1525.
https://doi.org/10.1021/op4002565
58. Byrne, F. P., Jin, S., Paggiola, G., Petchey, T. H. M., Clark, J. H., Farmer, T. J., Hunt, A. J., McElroy, C. R., Sherwood, J. Tools and techniques for solvent selection: green solvent selection guides. Sustain. Chem. Process., 2016, 4(7).
https://doi.org/10.1186/s40508-016-0051-z
59. Wei, N., Xu, D., Hao, B., Guo, S., Guo, Y., Wang, S. Chemical reactions of organic compounds in supercritical water gasification and oxidation. Water Res., 2021, 190, 116634.
https://doi.org/10.1016/j.watres.2020.116634
60. Akizuki, M., Fujii, T., Hayashi, R., Oshima, Y. Effects of water on reactions for waste treatment, organic synthesis, and bio-refinery in sub- and supercritical water. J. Biosci. Bioeng., 2014, 117(1), 10–18.
https://doi.org/10.1016/j.jbiosc.2013.06.011
61. Chen, J., Wang, Q., Xu, Z., E, J., Leng, E., Zhang, F., Liao, G. Process in supercritical water gasification of coal: A review of fundamentals, mechanisms, catalysts and element transformation. Energy Convers. Manag., 2021, 237, 114122.
https://doi.org/10.1016/j.enconman.2021.114122
62. Li, Y., Guo, L., Zhang, X., Jin, H., Lu, Y. Hydrogen production from coal gasification in supercritical water with a continuous flowing system. Int. J. Hydrog. Energy, 2010, 35(7), 3036–3045.
https://doi.org/10.1016/j.ijhydene.2009.07.023
63. Yamaguchi, D., Sanderson, P. J., Lim, S., Aye, L. Supercritical water gasification of Victorian brown coal: Experimental characterisation. Int. J. Hydrog. Energy, 2009, 34(8), 3342–3350.
https://doi.org/10.1016/j.ijhydene.2009.02.026
64. Okolie, J. A., Rana, R., Nanda, S., Dalai, A. K., Kozinski, J. A. Supercritical water gasification of biomass: A state-of-the-art review of process parameters, reaction mechanisms and catalysis. Sustain. Energy Fuels, 2019, 3(3), 578–598.
https://doi.org/10.1039/C8SE00565F
65. Nanda, S., Isen, J., Dalai, A. K., Kozinski, J. A. Gasification of fruit wastes and agro-food residues in supercritical water. Energy Convers. Manag., 2016, 110, 296–306.
https://doi.org/10.1016/j.enconman.2015.11.060
66. Jin, H., Lu, Y., Liao, Bo., Guo, L., Zhang, X. Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor. Int. J. Hydrog. Energy, 2010, 35(13), 7151–7160.
https://doi.org/10.1016/j.ijhydene.2010.01.099
67. Ge, Z., Guo, S., Guo, L, Cao, C., Su, X., Jin, H. Hydrogen production by non-catalytic partial oxidation of coal in supercritical water: Explore the way to complete gasification of lignite and bituminous coal. Int. J. Hydrog. Energy, 2013, 38(29), 12786–12794.
https://doi.org/10.1016/j.ijhydene.2013.06.092
68. Wang, S., Guo, Y., Wang, L., Wang, Y., Xu, D., Ma, H. Supercritical water oxidation of coal: Investigation of operating parameters’ effects, reaction kinetics and mechanism. Fuel Process. Technol., 2011, 92(3), 291–297.
https://doi.org/10.1016/j.fuproc.2010.09.010
69. Adschiri, T., Sato, T., Shibuichi, H., Fang, Z., Okazaki, S., Arai, K. Extraction of Taiheiyo coal with supercritical water–HCOOH mixture. Fuel, 2000, 79(3–4), 243–248.
https://doi.org/10.1016/S0016-2361(99)00158-1
70. Lan, R., Jin, H., Guo, L., Ge, Z., Guo, S., Zhang, X. Hydrogen production by catalytic gasification of coal in supercritical water. Energy Fuels 2014, 28(11),6911–6917.
https://doi.org/10.1021/ef502050p
71. Jin, H., Chen, Y., Ge, Z., Liu, S., Ren, C., Guo, L. Hydrogen production by Zhundong coal gasification in supercritical water. Int. J. Hydrog. Energy, 2015, 40(46), 16096–16103.
https://doi.org/10.1016/j.ijhydene.2015.09.003
72. Jin, H., Wang, Y., Wang, H., Wu, Z., Li, X. Influence of Stefan flow on the drag coefficient and heat transfer of a spherical particle in a supercritical water cross flow. Phys. Fluids, 2021, 33(2), 023313.
https://doi.org/10.1063/5.0041572
73. Jin, H., Guo, L., Guo, J., Ge, Z., Cao, C., Lu, Y. Study on gasification kinetics of hydrogen production from lignite in supercritical water. Int. J. Hydrog. Energy, 2015, 40(24), 7523–7529.
https://doi.org/10.1016/j.ijhydene.2014.12.095
74. Jin, H., Zhao, X., Guo, S., Cao, C., Guo, L. Investigation on linear description of the char conversion for the process of supercritical water gasification of Yimin lignite. Int. J. Hydrog. Energy, 2016, 41(36), 16070–16076.
https://doi.org/10.1016/j.ijhydene.2016.05.129
75. Cao, C., Guo, L., Yin, J., Jin, H., Cao, W., Jia, Y., Yao, X. Supercritical water gasification of coal with waste black liquor as inexpensive additives. Energy Fuels, 2015, 29(1), 384–391.
https://doi.org/10.1021/ef502110d
76. Jin, H., Lu, Y., Guo, L., Cao, C., Zhang, X. Hydrogen production by partial oxidative gasification of biomass and its model compounds in supercritical water. Int. J. Hydrog. Energy, 2010, 35(7), 3001–3010.
https://doi.org/10.1016/j.ijhydene.2009.06.059
77. Muangrat, R., Onwudili, J. A., Williams, P. T. Reaction products from the subcritical water gasification of food wastes and glucose with NaOH and H2O2.Bioresour. Technol., 2010, 101(17), 6812–6821.
https://doi.org/10.1016/j.biortech.2010.03.114
78. Kersten, S. R. A., Potic, B., Prins, W., Van Swaaij, W. P. M. Gasification of model compounds and wood in hot compressed water. Ind. Eng. Chem. Res., 2006, 45(12), 4169–4177.
https://doi.org/10.1021/ie0509490
79. Lu, Y., Guo, L., Ji, C., Zhang, X., Hao, X., Yan, Q. Hydrogen production by biomass gasification in supercritical water: A parametric study. Int. J. Hydrog. Energy, 2006, 31(7), 822–831.
https://doi.org/10.1016/j.ijhydene.2005.08.011
80. Wang, J., Takarada, T. Role of calcium hydroxide in supercritical water gasifi-cation of low-rank coal. Energy Fuels, 2001, 15(2), 356–362.
https://doi.org/10.1021/ef000144z
81. Ge, Z., Jin, H., Guo, L. Hydrogen production by catalytic gasification of coal in supercritical water with alkaline catalysts: Explore the way to complete gasification of coal. Int. J. Hydrog. Energy, 2014, 39(34), 19583–19592.
https://doi.org/10.1016/j.ijhydene.2014.09.119
82. De Heer, J. The principle of Le Chatelier and Braun. J. Chem. Educ., 1957, 34(8), 375–380.
https://doi.org/10.1021/ed034p375
83. Peterson, A. A., Vogel, F., Lachance, R. P., Fröling, M., Antal, Jr., M. J., Tester, J. W. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ. Sci., 2008, 1, 32–65.
https://doi.org/10.1039/b810100k
84. Guan, Q., Mao, T., Zhang, Q., Miao, R., Ning, P., Gu, J., Tian, S., Chen, Q., Chai, X. Catalytic gasification of lignin with Ni/Al2O3–SiO2 in sub/supercritical water. J. Supercrit. Fluids, 2014, 95, 413–421.
https://doi.org/10.1016/j.supflu.2014.10.015
85. Zhu, C., Guo, L., Jin, H., Huang, J., Li, S., Lian, X. Effects of reaction time and catalyst on gasification of glucose in supercritical water: Detailed reaction pathway and mechanisms. Int. J. Hydrog. Energy, 2016, 41(16), 6630–6639.
https://doi.org/10.1016/j.ijhydene.2016.03.035
86. Yamaguchi, A., Hiyoshi, N., Sato, O., Shirai, M. Gasification of organosolv-lignin over charcoal supported noble metal salt catalysts in supercritical water. Top. Catal., 2012, 55(11–13), 889–896.
https://doi.org/10.1007/s11244-012-9857-4
87. Monte, M., Gamarra, D., López Cámara, A., Rasmussen, S. B., Gyorffy, N., Schay, Z., Martinez-Arias, A., Conesa, J. C. Preferential oxidation of CO in excess H2 over CuO/CeO2 catalysts: Performance as a function of the copper coverage and exposed face present in the CeO2 support. Catal. Today, 2014, 229, 104–113.
https://doi.org/10.1016/j.cattod.2013.10.078
88. Yu, J., Lu, X., Shi, Y., Chen, Q., Guan, Q., Ning, P., Tian, S., Gu, J. Catalytic gasification of lignite in supercritical water with Ru/CeO2–ZrO2. Int. J. Hydrog. Energy, 2016, 41(8), 4579–4591.
https://doi.org/10.1016/j.ijhydene.2015.12.152
89. Guan, Q., Huang, X., Liu, J., Gu, J., Miao, R., Chen, Q., Ning, P. Supercritical water gasification of phenol using a Ru/CeO2 catalyst. Chem. Eng. J., 2016, 283, 358–365.
https://doi.org/10.1016/j.cej.2015.05.033
90. Chang, Z., Chu, M., Zhang, C., Bai, S., Ma, L. Investigation of the effect of selected transition metal salts on the pyrolysis of Huadian oil shale, China. Oil Shale, 2017, 34(4), 354–367.
https://doi.org/10.3176/oil.2017.4.04
91. Kang, S., Sun, Y., Deng, S., Li, S., Su, Y., Guo, W., Li, J. Extraction of Huadian oil shale in subcritical FeCl2 solution. Fuel Process. Technol., 2021, 211, 106571.
https://doi.org/10.1016/j.fuproc.2020.106571
92. Kang, S., Sun, Y., Qiao, M., Li, S., Deng, S., Guo, W., Li, J., He, W. The enhancement on oil shale extraction of FeCl3 catalyst in subcritical water. Energy, 2022, 238, Part A, 121763.
https://doi.org/10.1016/j.energy.2021.121763
93. Liang, X., Zhao, Q., Dong, Y., Guo, L., Jin, Z., Liu, Q. Experimental investigation on supercritical water gasification of organic-rich shale with low maturity for syngas production. Energy Fuels, 2021, 35(9), 7657–7665.
https://doi.org/10.1021/acs.energyfuels.0c04140
94. Nasyrova, Z. R., Kayukova, G. P., Vakhin, A. V., Djimasbe, R., Chemodanov, A. E. Heavy oil hydrocarbons and kerogen destruction of carbonate–siliceous domanic shale rock in sub- and supercritical water. Processes, 2020, 8(7), 800.
https://doi.org/10.3390/pr8070800
95. Lu, Y., Wang, Z., Kang, Z., Li, W., Yang, D., Zhao, Y. Comparative study on the pyrolysis behavior and pyrolysate characteristics of Fushun oil shale during anhydrous pyrolysis and sub/supercritical water pyrolysis. RSC Adv., 2022, 12(26), 16329–16341.
https://doi.org/10.1039/D2RA02282F
96. Abourriche, A., Oumam, M., Mansouri, S., Mouiya, M., Rakcho, Y., Benhammou, A., Abouliatim, Y., Alami, J., Hannache, H. Effect of processing conditions on the improvement of properties and recovering yield of Moroccan oil shale. Oil Shale, 2022, 39(1), 61–78.
https://doi.org/10.3176/oil.2022.1.04
97. Chham, A., Khouya, E., Abourriche, A. K., Oumam, M., Gmouh, S., Mansouri, S., El Harti, M., Hannache, H.. Supercritical water extraction and characterization of Moroccan shale oil by different solvent. J. Mater. Environ. Sci., 2018, 9(6), 1771–1778.
https://doi.org/10.26872/jmes.2018.9.6.197
98. Saeed, S. A., Taura, U., Al-Wahaibi, Y., Al-Muntaser, A. A., Yuan, C., Varfolomeev, M. A., Al-Bahry, S., Joshi, S., Djimasbe, R., Suwaid, M. A., Kadyrov, R. I., Galeev, R, I., Naabi, A., Hasani, M., Al Busaidi, R. S. Hydrothermal conversion of oil shale: Synthetic oil generation and micro-scale pore structure change. Fuel, 2022, 312, 122786.
https://doi.org/10.1016/j.fuel.2021.122786
99. Sun, Y., Kang, S., Wang, S., He, L., Guo, W., Li, Q., Deng, S. Subcritical water extraction of Huadian oil shale at 300 °C. Energy Fuels, 2019, 33(3), 2106–2114.
https://doi.org/10.1021/acs.energyfuels.8b04431
100. Yang, D., Wang, L., Zhao, Y., Kang, Z. Investigating pilot test of oil shale pyrolysis and oil and gas upgrading by water vapor injection. J. Petrol. Sci. Eng., 2021, 196, 108101.
https://doi.org/10.1016/j.petrol.2020.108101
101. Fomitšov, M. Low-temperature supercritical conversion of kukersite oil shale. Oil Shale, 2019, 36(2S), 171–178.
https://doi.org/10.3176/oil.2019.2S.07
102. Yang, T., Zhou, B., Li, R., Li, B., Zhang, W., Kai, X. Liquefaction of oil shale in supercritical ethanol. Oil Shale, 2018, 35(3), 279–289.
https://doi.org/10.3176/oil.2018.3.07
103. Zhang, G., Ranjith, P. G., Li, Z., Gao, M., Ma, Z. Long-term effects of CO2-water-coal interactions on structural and mechanical changes of bituminous coal. J. Petrol. Sci. Eng., 2021, 207, 109093.
https://doi.org/10.1016/j.petrol.2021.109093
104. Yu, H., Xu, H., Fu, W., Lu, X., Chen, Z., Qi, S., Wang, Y., Yang, W., Lu, J. Extraction of shale oil with supercritical CO2: Effects of number of fractures and injection pressure. Fuel, 2021, 285, 118977.
https://doi.org/10.1016/j.fuel.2020.118977
105. Cheng, Y., Zhang, X., Lu, Z., Pan, Z. jun, Zeng, M., Du, X., Xiao, S. The effect of subcritical and supercritical CO2 on the pore structure of bituminous coals. J. Nat. Gas Sci. Eng., 2021, 94, 104132.
https://doi.org/10.1016/j.jngse.2021.104132