In this study, the hydrocarbon generation of 1–4 cm sized shale in supercritical water (SCW) was investigated. The results showed that temperature was the most important factor affecting the hydrocarbon generation of organic-rich shale in the presence of supercritical water. In the temperature range of 380–450 °C, the optimum oil generation temperature was 430 °C. The produced oil component became heavier with increasing temperature. Increasing temperature was beneficial to gas production and improved the selectivity of H2 and CH4. In the pressure range of 22.5–27.5 MPa, oil and gas production decreased with increasing pressure. The influence of pressure on conversion path was almost negligible. Pressure affected the hydrocarbon generation of shale in supercritical water by affecting hydrocarbon expulsion. In the water-shale mass ratio range of 0.5–5 and the reaction time range of 1–12 h, increasing both parameter ranges was conducive to the hydrocarbon generation of oil shale. The selectivity of H2 increased and that of CH4 and CO2 decreased with increasing water-shale mass ratio. The selectivity of CH4 and C2H6 increased with increasing reaction time.
1. Mozaffari, S., Järvik, O., Baird, Z. S. Composition of gas from pyrolysis of Estonian oil shale with various sweep gases. Oil Shale, 2021, 38(3), 215‒227.
https://doi.org/10.3176/oil.2021.3.03
2. Jin, Z., Bai, Z., Gao, B., Li, M. Has China ushered in the shale oil and gas revolution? Oil Gas Geol., 2019, 40(3), 451‒458.
3. Tang, X., Li, S., Yue, C., He, J., Hou, J. Lumping kinetics of hydrodesulfurization and hydrodenitrogenation of the middle distillate from Chinese shale oil. Oil Shale, 2013, 30(4), 517‒535.
https://doi.org/10.3176/oil.2013.4.05
4. Hermann, W., Ernst, U. F. Supercritical water as a solvent. Angew. Chem. Int. Ed., 2005, 44(18), 2672‒2692.
https://doi.org/10.1002/anie.200462468
5. Kruse, A. Supercritical water gasification. Biofuel. Bioprod. Biorefin., 2008, 2(5), 415‒437.
https://doi.org/10.1002/bbb.93
6. Reddy, S. N., Nanda, S., Dalai, A. K., Kozinski, J. A. Supercritical water gasification of biomass for hydrogen production. Int. J. Hydrog. Energy, 2014, 39(13), 6912‒6926.
https://doi.org/10.1016/j.ijhydene.2014.02.125
7. Rodriguez Correa, C., Kruse, A. Supercritical water gasification of biomass for hydrogen production ‒ Review. J. Supercrit. Fluids, 2018, 133, Part 2, 573‒590.
https://doi.org/10.1016/j.supflu.2017.09.019
8. Oasmaa, A., Lehto, J., Solantausta, Y., Kallio, S. Historical review on VTT fast pyrolysis bio-oil production and upgrading. Energy Fuels, 2021, 35(7), 5683‒5695.
https://doi.org/10.1021/acs.energyfuels.1c00177
9. Xu, J., Kou, J., Guo, L., Jin, H., Peng, Z., Ren, C. Experimental study on oil-containing wastewater gasification in supercritical water in a continuous system. Int. J. Hydrog. Energy, 2019, 44(30), 15871‒15881.
https://doi.org/10.1016/j.ijhydene.2018.10.069
10. García-Jarana, M. B., Sánchez-Oneto, J., Portela, J. R., Martínez de la Ossa, E. J. Supercritical water gasification of organic wastes for energy generation. In: Supercritical Fluid Technology for Energy and Environmental Applications (Anikeev, V., Fan, M., Eds.). Elsevier: Boston, 2014, 191‒200.
https://doi.org/10.1016/B978-0-444-62696-7.00010-1
11. Wang, W., Lu, H., Wei, W., Shi, J., Zhao, Q., Jin, H. Experimental investigation on the production of hydrogen from discarded circuit boards in supercritical water. Int. J. Hydrog. Energy, 2022.
https://doi.org/10.1016/j.ijhydene.2021.11.208
12. Wang, C., Zhu, C., Huang, J., Li, L., Jin, H. Enhancement of depolymerization slag gasification in supercritical water and its gasification performance in fluidized bed reactor. Renew. Energ., 2021, 168, 829‒837.
https://doi.org/10.1016/j.renene.2020.12.104
13. Guo, L., Jin, H., Lu, Y. Supercritical water gasification research and development in China. J. Supercrit. Fluids, 2015, 96, 144‒150.
https://doi.org/10.1016/j.supflu.2014.09.023
14. Xia, F., Tian, S., Ning, P., Gu, J., Guan, Q., Miao, R., Wang, Y. Catalytic gasifi-cation of lignite with KOH in supercritical water. Can. J. Chem. Eng., 2014, 92(3), 421‒425.
https://doi.org/10.1002/cjce.21832
15. Lan, R., Jin, H., Guo, L., Ge, Z., Guo, S., Zhang, X. Hydrogen production by catalytic gasification of coal in supercritical water. Energy Fuels, 2014, 28(11), 6911‒6917.
https://doi.org/10.1021/ef502050p
16. Zhao, Q., Guo, L., Huang, Z., Chen, L., Jin, H., Wang, Y. Experimental investi-gation on enhanced oil recovery of extra heavy oil by supercritical water flooding. Energy Fuels, 2018, 32(2), 1685‒1692.
https://doi.org/10.1021/acs.energyfuels.7b03839
17. Dejhosseini, M., Aida, T., Watanabe, M., Takami, S., Hojo, D., Aoki, N., Arita, T., Kishita, A., Adschiri, T. Catalytic cracking reaction of heavy oil in the presence of cerium oxide nanoparticles in supercritical water. Energy Fuels, 2013, 27(8), 4624‒4631.
https://doi.org/10.1021/ef400855k
18. Rana, R., Nanda, S., Kozinski, J. A., Dalai, A. K. Investigating the applicability of Athabasca bitumen as a feedstock for hydrogen production through catalytic supercritical water gasification. J. Environ. Chem. Eng., 2018, 6(1), 182‒189.
https://doi.org/10.1016/j.jece.2017.11.036
19. Rana, R., Nanda, S., Maclennan, A., Hu, Y., Kozinski, J. A., Dalai, A. K. Comparative evaluation for catalytic gasification of petroleum coke and asphaltene in subcritical and supercritical water. J. Energy Chem., 2019, 31, 107‒118.
https://doi.org/10.1016/j.jechem.2018.05.012
20. Liu, J., Xing, Y., Chen, Y., Yuan, P., Cheng, Z., Yuan, W. Visbreaking of heavy oil under supercritical water environment. Ind. Eng. Chem. Res., 2018, 57(3), 867‒875.
https://doi.org/10.1021/acs.iecr.7b04024
21. Ates, A., Azimi, G., Choi, K. H., Green, W. H., Timko, M. T. The role of catalyst in supercritical water desulfurization. Appl. Catal. B, 2014, 147, 144‒155.
https://doi.org/10.1016/j.apcatb.2013.08.018
22. Yu, J., Sun, L., Ma, C., Qiao, Y., Yao, H. Thermal degradation of PVC: A review. Waste Manage., 2016, 48, 300‒314.
https://doi.org/10.1016/j.wasman.2015.11.041
23. Yamaguchi, D., Sanderson, P. J., Lim, S., Aye, L. Supercritical water gasification of Victorian brown coal: Experimental characterisation. Int. J. Hydrog. Energy, 2009, 34(8), 3342‒3350.
https://doi.org/10.1016/j.ijhydene.2009.02.026
24. Guo, L., Jin, H. Boiling coal in water: Hydrogen production and power generation system with zero net CO2 emission based on coal and supercritical water gasification. Int. J. Hydrog. Energy, 2013, 38(29), 12953‒12967.
https://doi.org/10.1016/j.ijhydene.2013.04.089
25. Li, X., Wu, Z., Wang, H., Jin, H. The effect of particle wake on the heat transfer characteristics between interactive particles in supercritical water. Chem. Eng. Sci., 2022, 247, 117030.
https://doi.org/10.1016/j.ces.2021.117030
26. Li, Y., Wang, H., Shi, J., Cao, C., Jin, H. Numerical simulation on natural convection and temperature distribution of supercritical water in a side-wall heated cavity. J. Supercrit. Fluids, 2022, 181, 105465.
https://doi.org/10.1016/j.supflu.2021.105465
27. Lu, Y., Wang, Z., Kang, Z., Li, W., Yang, D., Zhao, Y. Comparative study on the pyrolysis behavior and pyrolysate characteristics of Fushun oil shale during anhydrous pyrolysis and sub/supercritical water pyrolysis. RSC Advances, 2022, 12, 16329–16341.
https://doi.org/10.1039/D2RA02282F
28. Hu, H., Zhang, J., Guo, S., Chen, G. Extraction of Huadian oil shale with water in sub- and supercritical states. Fuel, 1999, 78(6), 645‒651.
https://doi.org/10.1016/S0016-2361(98)00199-9
29. Veski, R., Palu, V., Kruusement, K. Co-liquefaction of kukersite oil shale and pine wood in supercritical water. Oil Shale, 2006, 23(3), 236‒248.
30. Funazukuri, T., Yokoi, S., Wakao, N. Supercritical fluid extraction of Chinese Maoming oil shale with water and toluene. Fuel, 1988, 67(1), 10‒14.
https://doi.org/10.1016/0016-2361(88)90004-X
31. Yanik, J., Yüksel, M., Saglam, M., Olukcu, N., Bartle, K., Frere, B. Charac-te-rization of the oil fractions of shale oil obtained by pyrolysis and supercritical water extraction. Fuel, 1995, 74(1), 46‒50.
https://doi.org/10.1016/0016-2361(94)P4329-Z
32. El Harfi, K., Bennouna, C., Mokhlisse, A., Ben Chanâa, M., Lemée, L., Joffre, J., Amblès, A. Supercritical fluid extraction of Moroccan (Timahdit) oil shale with water. J. Anal. Appl. Pyrolysis, 1999, 50(2), 163‒174.
https://doi.org/10.1016/S0165-2370(99)00028-5
33. Fedyaeva, O. N., Antipenko, V. R., Dubov, D. Yu., Kruglyakova, T. V., Vostrikov, A. A. Non-isothermal conversion of the Kashpir sulfur-rich oil shale in a supercritical water flow. J. Supercrit. Fluids, 2016, 109, 157‒165.
https://doi.org/10.1016/j.supflu.2015.11.020
34. Nasyrova, Z. R., Kayukova, G. P., Onishchenko, Y. V., Morozov, V. P., Vakhin, A. V. Conversion of high-carbon Domanic shale in sub- and supercritical waters. Energy Fuels, 2020, 34(2), 1329‒1336.
https://doi.org/10.1021/acs.energyfuels.9b03130
35. Liang, X., Zhao, Q., Dong, Y., Guo, L., Jin, Z., Liu, Q. Experimental investigation on supercritical water gasification of organic-rich shale with low maturity for syngas production. Energy Fuels, 2021, 35(9), 7657‒7665.
https://doi.org/10.1021/acs.energyfuels.0c04140
36. Zhao, Q., Guo, L., Wang, Y., Jin, H., Chen, L., Huang, Z. Enhanced oil recovery and in situ upgrading of heavy oil by supercritical water injection. Energy Fuels, 2020, 34(1), 360‒367.
https://doi.org/10.1021/acs.energyfuels.9b03946
37. Savage, P. E., Klein, M. T., Kukes, S. G. Asphaltene reaction pathways. 3. Effect of reaction environment. Energy Fuels, 1988, 2(5), 619‒628.
https://doi.org/10.1021/ef00011a003
38. Campbell, J. H., Koskinas, G. J., Gallegos, G., Gregg, M. Gas evolution during oil shale pyrolysis. 1. Nonisothermal rate measurements. Fuel, 1980, 59(10), 718‒726.
https://doi.org/10.1016/0016-2361(80)90027-7
39. Susanti, R. F., Veriansyah, B., Kim, J.-D., Kim, J., Lee, Y.-W. Continuous supercritical water gasification of isooctane: A promising reactor design. Int. J. Hydrog. Energy, 2010, 35(5), 1957‒1970.
https://doi.org/10.1016/j.ijhydene.2009.12.157
40. Schubert, M., Regler, J. W., Vogel, F. Continuous salt precipitation and separation from supercritical water. Part 1: Type 1 salts. J. Supercrit. Fluids, 2010, 52(1), 99‒112.
https://doi.org/10.1016/j.supflu.2009.10.002
41. Onsager, O.-T., Brownrigg, M. S. A., Lødeng, R. Hydrogen production from water and CO via alkali metal formate salts. Int. J. Hydrog. Energy, 1996, 21(10), 883‒885.
https://doi.org/10.1016/0360-3199(96)00031-6
42. Sınağ A., Kruse, A., Rathert, J. Influence of the heating rate and the type of catalyst on the formation of key intermediates and on the generation of gases during hydropyrolysis of glucose in supercritical water in a batch reactor. Ind. Eng. Chem. Res., 2004, 43(2), 502‒508.
https://doi.org/10.1021/ie030475+
43. Ge, Z., Guo, L., Jin, H. Catalytic supercritical water gasification mechanism of coal. Int. J. Hydrog. Energy, 2020, 45(16), 9504‒9511.
https://doi.org/10.1016/j.ijhydene.2020.01.245
44. Wagner, W., Kretzschmar, H.-J. IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97. Springer: Berlin, Heidelberg, 2008, 7‒150.
https://doi.org/10.1007/978-3-540-74234-0_3
45. Lewan, M. D. Water as a source of hydrogen and oxygen in petroleum formation by hydrous pyrolysis. Preprints of Papers Presented at the 204th American Chemical Society Meeting. Washington, D.C., Aug 23‒28, 1992, 37(4), 1643‒1649.