A three-dimensional (3D) molecular model of Dachengzi oil shale kerogen was constructed using quantitative 13C direct polarization/magic angle spinning solid-state nuclear magnetic resonance (DP/MAS SSNMR) data and accurate quantum chemistry methods. The heteroatom-containing functional groups were carefully identified using X-ray photoelectron spectroscopy (XPS) and pyrolysis experimental data. A large portion of C487H778O43N8S5 was selected for the model to introduce more types of functional groups and make the model representative. The carbon unit fractions, structural parameters and atomic ratios of the model well matched with the experimental data. The equilibrium structure was obtained by geometry optimization using the density functional theory (DFT) method at the B3LYP/STO-3G level of theory and validated by frequency calculations at the same level. The final geometry is an incompact structure containing a large number of branches, which well reflects the cross-linked molecular structure of the kerogen. The simulated 13C NMR spectrum was generated using quantum chemical calculations at the B3LYP/6-31G(d) level. The simulated spectrum is in good agreement with the experimental spectrum, indicating the validity and reliability of the model.
1. Tissot, B. P., Welte, D. H. Petroleum Formation and Occurrence. Springer-Verlag, New York, 1984.
https://doi.org/10.1007/978-3-642-87813-8
2. Knaus, E., Killen, J., Biglarbigi, K., Crawford, P. An overview of oil shale resources. In: Oil Shale: A Solution to the Liquid Fuel Dilemma(Ogunsola, O. I., Hartstein, A. M., Ogunsola, O., eds.). ACS Symposium Series, 1032, American Chemical Society, Washington, DC, 2010, 3‒20.
https://doi.org/10.1021/bk-2010-1032.ch001
3. Vandenbroucke, M., Largeau, C. Kerogen origin, evolution and structure. Org. Geochem., 2007, 38(5), 719‒833.
https://doi.org/10.1016/j.orggeochem.2007.01.001
4. Tong, J. H., Han, X. X., Wang, S., Jiang, X. M. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (solid-state 13C NMR, XPS, FT-IR, and XRD). Energy Fuels, 2011, 25(9), 4006‒4013.
https://doi.org/10.1021/ef200738p
5. Fletcher, T. H., Gillis, R., Adams, J., Hall, T., Mayne, C. L., Solum, M. S., Pugmire, R. J. Characterization of macromolecular structure elements from a Green River oil shale, II. Characterization of pyrolysis products by 13C NMR, GC/MS, and FTIR. Energy Fuels, 2014, 28(5), 2959‒2970.
https://doi.org/10.1021/ef500095j
6. Kelemen, S. R., Freund, H., Gorbaty, M. L., Kwiatek, P. J. Thermal chemistry of nitrogen in kerogen and low-rank coal. Energy Fuels, 1999, 13(2), 529‒538.
https://doi.org/10.1021/ef9802126
7. Kelemen, S. R., Afeworki, M., Gorbaty, M. L., Sansone, M., Kwiatek, P. J., Walters, C. C., Freund, H., Siskin, M., Bence, A. E., Curry, D. J., Solum, M., Pugmire, R. J., Vandenbroucke, M., Leblond, M., Behar, F. Direct charac-teri-zation of kerogen by X-ray and solid-state 13C nuclear magnetic resonance methods. Energy Fuels, 2007, 21(3), 1548‒1561.
https://doi.org/10.1021/ef060321h
8. Bansal, V. R., Kumar, R., Sastry, M. I. S., Badhe, R. M., Kapur, G. S., Saxena, D. Direct estimation of shale oil potential by the structural insight of Indian origin kerogen. Fuel, 2019, 241, 410‒416.
https://doi.org/10.1016/j.fuel.2018.12.057
9. Wind, R. A., Maciel, G. E., Botto, R. E. Quantitation in 13C NMR spectroscopy of carbonaceous solids. In: Magnetic Resonance of Carbonaceous Solids (Botto, R. E., Sanada, Y., eds.). ACS Advances in Chemistry, No. 229, American Chemical Society, Washington, DC, 1992, 3‒26.
https://doi.org/10.1021/ba-1993-0229.ch001
10. Smernik, R. J., Schwark, L., Schmidt, M. W. I. Assessing the quantitative reliability of solid-state 13C NMR spectra of kerogens across a gradient of thermal maturity. Solid State Nucl. Magn. Reson., 2006, 29(4), 312‒321.
https://doi.org/10.1016/j.ssnmr.2005.10.014
11. Mao, J. D., Fang, X. W., Lan, Y. Q., Schimmelmann, A., Mastalerz, M., Xu, L., Schmidt-Rohr, K. Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy. Geochim. Cosmochim. Acta, 2010, 74(7), 2110‒2127.
https://doi.org/10.1016/j.gca.2009.12.029
12. Gao, Y., Zou, Y. R., Liang, T., Peng, P. A. Jump in the structure of Type I kerogen revealed from pyrolysis and 13C DP MAS NMR. Org. Geochem., 2017, 112, 105‒118.
https://doi.org/10.1016/j.orggeochem.2017.07.004
13. Yen, T. F. Structural aspects of organic components in oil shales. In: Developments in Petroleum Science (Yen, T. F., Chilingarian, G. V., eds.). Elsevier, Oxford, 1976, 5, 129‒148.
https://doi.org/10.1016/S0376-7361(08)70047-5
14. Behar, F., Vandenbroucke, M. Chemical modelling of kerogens. Org. Geochem., 1987, 11(1), 15‒24.
https://doi.org/10.1016/0146-6380(87)90047-7
15. Siskin, M., Scouten, C. G., Rose, K. D., Aczel, T., Colgrove, S. G., Pabst Jr., R. E. Detailed structural characterization of the organic material in Rundle Ramsay Crossing and Green River oil shales. In: Composition, Geochemistry and Conversion of Oil Shales (Snape, C. E., ed.). Springer Netherlands, Dordrecht, 1995, 143‒158.
https://doi.org/10.1007/978-94-011-0317-6_9
16. Lille, Ü., Heinmaa, I., Pehk, T. Molecular model of Estonian kukersite kerogen evaluated by 13C MAS NMR spectra. Fuel, 2003, 82(7), 799‒804.
https://doi.org/10.1016/S0016-2361(02)00358-7
17. Wang, Q., Hou, Y. C., Wu, W. Z., Yu, Z., Ren, S. H., Liu, Q. Y., Liu, Z. Y. A study on the structure of Yilan oil shale kerogen based on its alkali-oxygen oxidation yields of benzene carboxylic acids, 13C NMR and XPS. Fuel Process. Technol., 2017, 166, 30‒40.
https://doi.org/10.1016/j.fuproc.2017.05.024
18. Huang, Z. K., Liang, T., Zhan, Z. W., Zou, Y. R., Li, M. W., Peng, P. A. Chemical structure evolution of kerogen during oil generation. Mar. Petrol. Geol., 2018, 98, 422‒436.
https://doi.org/10.1016/j.marpetgeo.2018.08.039
19. Chu, W. Y., Cao, X. Y., Schmidt-Rohr, K., Birdwell, J. E., Mao, J. D. Investigation into the effect of heteroatom content on kerogen structure using advanced 13C solid-state nuclear magnetic resonance spectroscopy. Energy Fuels, 2019, 33(2), 645‒653.
https://doi.org/10.1021/acs.energyfuels.8b01909
20. Orendt, A. M., Pimienta, I. S. O., Badu, S. R., Solum, M. S., Pugmire, R. J., Facelli, J. C., Locke, D. R., Chapman, K. W., Chupas, P. J., Winans, R. E. Three-dimensional structure of the Siskin Green River oil shale kerogen model: A comparison between calculated and observed properties. Energy Fuels, 2013, 27(2), 702‒710.
https://doi.org/10.1021/ef3017046
21. Katti, D. R., Thapa, K. B., Katti, K. S. Modeling molecular interactions of sodium montmorillonite clay with 3D kerogen models. Fuel, 2017, 199, 641‒652.
https://doi.org/10.1016/j.fuel.2017.03.021
22. Ungerer, P., Collell, J., Yiannourakou, M. Molecular modeling of the volumetric and thermodynamic properties of kerogen: Influence of organic type and maturity. Energy Fuels, 2015, 29(1), 91‒105.
https://doi.org/10.1021/ef502154k
23. Bousige, C., Ghimbeu, C. M., Vix-Guterl, C., Pomerantz, A. E., Suleimenova, A., Vaughan, G., Garbarino, G., Feygenson, M., Wildgruber, C., Ulm, F.-J., Pellenq, R. J. M., Coasne, B. Realistic molecular model of kerogen’s nanostructure. Nat. Mater., 2016, 15(5), 576‒582.
https://doi.org/10.1038/nmat4541
24. Tong, J. H., Jiang, X. M., Han, X. X., Wang, X. Y. Evaluation of the macromolecular structure of Huadian oil shale kerogen using molecular modeling. Fuel, 2016, 181, 330‒339.
https://doi.org/10.1016/j.fuel.2016.04.139
25. Guan, X. H., Liu, Y., Wang, D., Wang, Q., Chi, M. S., Liu, S., Liu, C. G. Three-dimensional structure of a Huadian oil shale kerogen model: An experimental and theoretical study. Energy Fuels, 2015, 29(7), 4122‒4136.
https://doi.org/10.1021/ef502759q
26. Razvigorova, M., Budinova, T., Tsyntsarski, B., Petrova, B., Ekinci, E., Atakul, H. The composition of acids in bitumen and in products from saponification of kerogen: Investigation of their role as connecting kerogen and mineral matrix. Int. J. Coal Geol., 2008, 76(3), 243‒249.
https://doi.org/10.1016/j.coal.2008.07.011
27. Marzec, A. Intermolecular interactions of aromatic hydrocarbons in carbonaceous materials: A molecular and quantum mechanics. Carbon,2000, 38(13), 1863‒1871.
https://doi.org/10.1016/S0008-6223(00)00024-5
28. Tesson, S., Firoozabadi, A. Methane adsorption and self-diffusion in shale kerogen and slit nanopores by molecular simulations. J. Phys. Chem. C, 2018, 122(41), 23528‒23542.
https://doi.org/10.1021/acs.jpcc.8b07123
29. Xu, F., Liu, H., Wang, Q., Pan, S., Zhao, D., Liu, Q., Liu, Y. ReaxFF-based molecular dynamics simulation of the initial pyrolysis mechanism of lignite. Fuel Process. Technol., 2019, 195, 106147.
https://doi.org/10.1016/j.fuproc.2019.106147
30. Pan, S., Wang, Q., Bai, J. R., Chi, M. S., Cui, D., Wang, Z. C., Liu, Q., Xu, F. Molecular structure and electronic properties of oil shale kerogen: An experimental and molecular modeling study. Energy Fuels, 2018, 32(12), 12394‒12404.
https://doi.org/10.1021/acs.energyfuels.8b03307
31. Zou, C. Y., Raman, S., van Duin, A. C. T. Large-scale reactive molecular dynamics simulation and kinetic modeling of high-temperature pyrolysis of the Gloeocapsomorphaprisca microfossils. J. Phys. Chem. B, 2014, 118(23), 6302‒6315.
https://doi.org/10.1021/jp501925a
32. Zhu, Y. Q., Su, H., Jing, Y., Guo, J. C., Tang, J. L. Methane adsorption on the surface of a model of shale: A density functional theory study. Appl. Surf. Sci., 2016, 387, 379‒384.
https://doi.org/10.1016/j.apsusc.2016.06.033
33. Zhang, H., Liu, J. X., Wang, X. Y., Jiang, X. M. Density functional theory study on two different oxygen enhancement mechanisms during NO–char interaction. Combust. Flame, 2016, 169, 11‒18.
https://doi.org/10.1016/j.combustflame.2016.03.023
34. Rogel, E. Simulation of interactions in asphaltene aggregates. Energy Fuels, 2000, 14(3), 566‒574.
https://doi.org/10.1021/ef990166p
35. Wang, X. Y., You, Y. L., Mu, M., Han, X. X., Shu, J., Jiang, X. M. Structural characterization of Huadian oil shale kerogen by using 13C DP/MAS NMR. Oil Shale, 2021, 38(3), 181‒198.
https://doi.org/10.3176/oil.2021.3.01
36. Tong, J. H. Behavior and Mechanism of Transformation of Nitrogen and Sulfur Elements in Oil Shale in the Course of Comprehensive Utilization. PhD dissertation. Shanghai Jiao Tong University, 2013 (in Chinese).
37. Jiang, X. M., Yu, L. J., Yan, C., Han, X. X., Yan, H. L. Experimental investigation of SO2 and NOx emissions from Huadian oil shale during circulating fluidized-bed combustion. Oil Shale, 2004, 21(3), 249‒257.
38. Tong, J. H., Liu, J. G., Han, X. X., Wang, S., Jiang, X. M. Characterization of nitrogen-containing species in Huadian shale oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Fuel, 2013, 104, 365‒371.
https://doi.org/10.1016/j.fuel.2012.09.042
39. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2009.
40. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 1988, 38(6), 3098‒3100.
https://doi.org/10.1103/PhysRevA.38.3098
41. Lee, C., Yang, W., Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter, 1988, 37(2), 785‒789.
https://doi.org/10.1103/PhysRevB.37.785
42. Miehlich, B., Savin, A., Stoll, H., Preuss, H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett., 1989, 157(3), 200‒206.
https://doi.org/10.1016/0009-2614(89)87234-3
43. Hehre, W. J., Stewart, R. F., Pople, J. A. Self-consistent molecular-orbital methods. I. Use of gaussian expansions of slater-type atomic orbitals. J. Chem. Phys., 1969, 51(6), 2657‒2664.
https://doi.org/10.1063/1.1672392
44. Collins, J. B., von R. Schleyer, P., Binkley, J. S., Pople, J. A. Self-consistent molecular orbital methods. XVII. Geometries and binding energies of second-row molecules. A comparison of three basis sets. J. Chem. Phys., 1976, 64(12), 5142‒5151.
https://doi.org/10.1063/1.432189
45. Han, X. X., Jiang, X. M., Cui, Z. G., Liu, J. G., Yan, J. W. Effects of retorting factors on combustion properties of shale char. 3. Distribution of residual organic matters. J. Hazard. Mater., 2010, 175(1‒3), 445‒451.
https://doi.org/10.1016/j.jhazmat.2009.10.026
46. Burnham, A. K., Bey, N. K., Koskinas, G. J. Hydrogen sulfide evolution from Colorado oil shale. In: Oil Shale, Tar Sands, and Related Materials (Stauffer, H. C., ed.). ACS Symposium Series, 163, American Chemical Society, Washington, DC, 1981, 61‒77.
https://doi.org/10.1021/bk-1981-0163.ch005
47. Davis, F. A., Panunto, T. W., Awad, S. B., Billmers, R. L., Squires, T. G. Pyrolysis of organic compounds. 1. Flash vacuum pyrolysis (FVP) of coal-model organic sulfides and their S-oxides. J. Org. Chem., 1984, 49(7), 1228‒1230.
https://doi.org/10.1021/jo00181a019
48. Silverstein, R. M., Webster, F. X., Kiemle, D. J. Spectrometric Identification of Organic Compounds. 7th ed.; John Wiley & Sons, Inc., New York, 2005.