2D RANS (Reynolds Average Navier Stokes) equations are used for numerical modeling of uprising particulate (gas-solid particle) turbulent flow in conditions of fluidized beds. The two-fluid model approach was used in giving numerical simulations. The flow domain is a round pipe with diameter of 1 m and height of 6 m (a real industrial object). The flow of mean velocity 4 m/s carries solid particles (material density 2000 kg/m3; sizes of 0.3, 1 and 1.5 mm) with mass flow ratio 10 kg/kg.
The mathematical model pertains to gravitational and viscous drag forces, Magnus and Saffman lift forces, effects of inter-particle collisions as well as particle interaction with the wall, effect of turbulence modulation (turbulence enhancement) at particles’ presence. The fluidized-bed conditions consider that flow conditions were set for high-temperature flow, density of the carrier fluid 0.329 kg/m3, and kinematic viscosity 1.55·10–4 m2/s.
The results are presented in the form of distribution of axial and radial velocity components of gaseous and solid phases, particle mass concentration and kinetic turbulent energy along the flow height at the flow exit (highest downstream position) and in the middle cross-section (intermediate position) in order to observe development of particulate flow.
As shown by the results, the 2D RANS model qualitatively and quantitatively describes the real-time distribution of flow in a real flow domain, i.e. the model covers reasonable physical phenomena occurring in fluidized-bed conditions.1. Ots, A. Oil Shale Fuel Combustion. – Tallinn, 2006, 833 pages.
2. Kartushinsky, A., Martins, A., Rudi, Ü., Shcheglov, I., Tisler, S., Krupenski, I., Siirde, A. Numerical simulation of uprising gas-solid particle flow in circulating fluidized bed // Oil-Shale. 2009. Vol. 26, No. 2. P. 125–138.
3. Hussainov, M., Kartushinsky, A., Mulgi, A., Rudi, Ü., Tisler, S. Experimental and theoretical study of the distribution of mass concentration of solid particles in the two-phase laminar boundary layer on a flat plate // Int. J. Multiphas. Flow. 1995, Vol. 21, No. 6. P. 1141–1161.
doi:10.1016/0301-9322(95)00040-5
4. Hussainov, M., Kartushinsky, A., Mulgi, A., Rudi, Ü. Gas-solid flow with the slip velocity of particles in a horizontal channel // J. Aerosol Sci. 1996. Vol. 27, No. 1. P. 41–59.
doi:10.1016/0021-8502(95)00052-6
5. Frishman, F., Hussainov, M., Kartushinsky, A., Rudi, Ü. Distribution characteristics of the mass concentration of coarse solid particles in a two-phase turbulent jet // J. Aerosol Sci. 1999. Vol. 30, No. 1. P. 51–69.
doi:10.1016/S0021-8502(98)00017-2
6. Kartushinsky, A., Michaelides, E. E. An analytical approach for the closure equations of gas-solid flows with inter-particle collisions // Int. J. Multiphas. Flow. 2004. Vol. 30, No. 2. P. 159–180.
doi:10.1016/j.ijmultiphaseflow.2003.10.007
7. Hussain, A., Ani, F. N., Darus, A. N., Mustafa, A., Salema, A. A. Simulation studies of gas-solid in the riser of a circulating fluidized bed // Proceedings of the 18th International Conference on Fluidized Bed Combustion, ASME Publication. 2005. P. 201–207.
8. Thermal Calculation of Power Generators (Standard Method). – Moskva: Energija, 1973. 295 pages [in Russian].
9. Perič, M., Scheuerer, G. CAST - A finite volume method for predicting two-dimensional flow and heat transfer phenomena. - GRS – Technische Notiz SRR. 1989, 89–01.
10. Perič, M., Ferziger, J. H. Computational Methods for Fluid Dynamics. – Berlin, Heidelberg: Springer-Verlag, 1996.
11. Crowe, C. T., Stock, D. E., Sharma, M. P. The particle-source-in cell (PSI-CELL) model for gas-droplet flows // J. Fluid. Eng-T. ASME. 1977. Vol. 99. P. 325–332.
12. Helland, E., Occelli, R., Tadrist, L. Numerical study of cluster formation in a gas-particle circulating fluidized bed // Powder Technol. 2000. Vol. 110,
No. 3. P. 210–221.
doi:10.1016/S0032-5910(99)00260-0
13. Sommerfeld, M. Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence // Int. J. Multiphas. Flow. 2001, Vol. 27, No. 10. P. 1829–1858.
doi:10.1016/S0301-9322(01)00035-0
14. Pfeffer, R., Rosetti, S., Lieblein, S. Analysis and correlation of heat transfer coefficients and friction factor data for dilute gas–solid suspensions. – NASA Technical Note D-3603, 1966.
15. Michaelides, E. E. A model for the flow of solid particles in gases // Int. J. Multiphas. Flow. 1983, Vol. 10, No. 1. P. 61–77.
doi:10.1016/0301-9322(83)90060-5
16. Crowe, C. T., Gillandt, I. Turbulence modulation of fluid-particle flows – a basic approach // Proc. 3rd Int. Conf. Multiphase Flows, Lyon, June 8–12, 1998. CD-ROM)
17. Arro, H., Pihu, T., Prikk, A., Rootamm, R., Konist, A. Comparison of ash from PF and CFB boilers and behavior of ash in ash fields // Proc. 20th Int. Conf. Fluidized Bed Combustion, China, May 18–21, 2009. P. 1054–1060.
18. Ding, J., Lyczkowski, R. W., Sha, W. T., Altobelli, S. A., Fukushima, E. Numerical analysis of liquid–solids suspension velocities and concentrations obtained by NMR imaging // Powder Technol. 1993. Vol. 77, No. 3. P. 301–312.
doi:10.1016/0032-5910(93)85022-2
19. Matsumoto, S., Saito, S. J. Monte Carlo simulation of horizontal pneumatic conveying based on the rough wall model // J. Chem. Eng. Jpn. 1970. Vol. 3, No. 2. P. 223–230.
doi:10.1252/jcej.3.223