The amount of total organic matter in asphaltites is high as would be expected, ranging from 12 to 73%. In contrast, this amount is low in the host rocks (0.6–6.3%). The Tmax values are generally between 428 °C and 451 °C. The hydrogen index (HI) values vary between 270 and 541 mg HC/g TOC. The hydrogen index values and Tmax values of the host rocks are significantly lower. The GC analyses have shown that the saturated fractions of all asphaltite samples were not biodegraded. Consequently, organic geochemical parameters such as Hopane/Hopane+Moretane, Ts /Tm, 22S/22S+22R and the values of %C27, %C28, %C29 steranes obtained as a result of GC-MS analysis were used for maturity assessments.
Although the organic geochemical parameters provided some data for the origin and placing mechanism, it is concluded that they are not sufficient for an overall conclusion, especially concerning placing mechanism. Therefore, new studies particularly on local and regional geological aspects need to be undertaken.
1. Lebküchner, R. F. Occurrences of the asphaltic substances in Southeastern Turkey and their genesis // Bulletin of the Mineral Research and Exploration Institute of Turkey. 1969. Vol. 72., P. 72–74.
2. Kural, O. Coal: Resources, Properties, Utilization, Pollution. – Istanbul: Kurtis Press, 1994 [in Turkish].
3. Ekinci, E., Bartle, K. D., Frere, B., Mulligan, M., Saraç, S.The nature and origin of harbulite and related asphaltite from southeastern Turkey // Chem. Geol. 1981. Vol. 34, No. 1–2. P. 151–164.
4 Orhun, F. Characteristic properties of the asphaltic substances in Southeastern Turkey, their degrees of metamorphosis and their classification problems // Bulletin of the Mineral Research and Exploration Institute of Turkey. 1969. Vol. 72. P. 97–109.
5. Parnell, J. Timing of hydrocarbon-metal interactions during basin evolution, Source, transport and deposition of metals // Proceedings of the 25 years SGA Anniversary Meeting, Nancy, 1991. Vol. 25. P. 573–576.
6. Saltoglu, T., Akyuz, T., Alparslan, E. Quantitative determination of molybdenum, nickel, vanadium and titanium in the asphaltites and asphaltite ashes by XRF-spectroscopy // Bulletin of the Mineral Research and Exploration Institute of Turkey. 1978. Vol. 91. P. 89–93.
7. Gönenç, O. Asphaltites and Asphaltite Deposits of Turkey. – A report of MTA, 1990 [in Turkish].
8. Şengüler, İ. Energy valve and potential of asphaltite and bituminous shale in Turkey. – Turkey 6th Energy Congress, 2007. P. 186–195 [in Turkish].
9. Karayigit, A. İ., Querol, X.Mineralogy and elemental contents of the Şırnak asphaltite, Southeast Turkey // Energ. Source. 2002. Vol. 24. P. 703–713.
doi:10.1080/00908310290086662
10. Karayigit, A. I., Gayer, R. A., Querol, X., Onacak, T. Contents of major and trace elements in feed coals from Turkish coal-fired power plants // Int. J. Coal Geol.2000. Vol. 44, No. 2. P. 169–184.
doi:10.1016/S0166-5162(00)00009-4
11. Erdem-Şenatalar, A., Ekinci, E., Keith, D., Bartle, K. D., Frere, B. Hydrocarbon minerals from South-Eastern Turkey – A comparison of the chemical natures of the neighbouring Raman-Dincer crude oil and Avgamasya Asphaltite // Erdöl & Kohle, Erdgas Petrochemie. Bd. 44, Hft. 7/8, 1991. P. 298–300.
12. Kavak, O., Yalçın, M. N. Organic geochemical properties of Şırnak asphaltites. – 14th International Petroleum and Natural Gas Congress and Exhibition of Turkey. 2003,12–14 May, Ankara, Turkey. International Proceedings. 2003. P. 185–187 [in Turkish].
13. Kavak, O., Connan, J., Yalçın, M. N., Jarvie, B., Jarvie, D. Geochemical characterization of the asphaltite veins from the Şırnak area, southeastern Turkey: their use as archaeological material. – IMOG 2007, Torquay, UK.
14. Harput, B., Harput, A. Geochemical evalvation of Seridahli (Şırnak) asphaltites of South-east Anatolia. – Turkey Petroleum Congress, 16–20 April 1990.
P. 92–106 [in Turkish].
15. Ekinci, E., Pakdel, H., Jones, D. W., Bartle, K. D., Olcay, A., Özel, F. The organic geochemistry of Harbul and Avgamasya asphaltites // Chim. Acta Turc. 1981. Vol. 9. P. 465–473.
16. Taşman, C. E. Harbolite, a carbonecaous hydrocarbon // Am. Assoc. Petr. Geol. Bull. 1946. Vol. 30. P. 1051.
17. Ekinci, E., Saraç, S., Bartle, K. D. Characterization of pyrolysis products of harbolite and Avgamasya asphaltites: Comparison with solvent extracts // Fuel. 1982. Vol. 61, No. 4. P. 346–350.
18. Yalçın Erik, N., Özçelik, O. Organic facies variation from well data on the Cudi Group, the Eastern part of SE Turkey // Geochem. Int. 2007. Vol. 11. P. 1245–1255.
19. Khalimov, E., M., Klimushin, I. M., Ferdman, L. I., Goldberg, I. S. Geological problems of natural bitumens. – 11th World Petrol. Congr., Bristol, UK. PD1 (5). 1983. P. 1–14.
20. Hiçyılmaz, C., Altun, N. E. Improvements on combustion properties of asphaltite and correlation of activation energies with combustion results // Fuel Process. Technol. 2006. Vol. 87, No. 6. P. 563–570.
doi:10.1016/j.fuproc.2005.07.010
21. Dewey, J. F., Pitman, W. C., Ryan, W. B. F., Bonnia, J. Plate tectonics and the evolution of the Alpine system // Geol. Soc. Am. Bull. 1973. Vol. 84, No. 10. P. 3137–3180.
doi:10.1130/0016-7606(1973)84<3137:PTATEO>2.0.CO;2
22. Bambach, R. K., Scotese, C. R., Ziegler, A. M. Before Pangea: the geographies of the Palaeozoic world // Am. Sci. 1980. Vol. 68. P. 26–38.
23. Şengör, A. M. C., Yılmaz, Y., Sungurlu, O. Tectonics of the Mediterranean Cimmerides: nature and evolution of the western termination of the Paleo-Tethys // Geological Society, London, Special Publications. 1984. Vol. 17, No. 1. P. 77–112.
24. Al-Laboun, A. A. Stratigraphy and hydrocarbon potential of Palaeozoic succession in both Tabuk and Widyan Basins, Arabia // Future Petroleum Provinces of the World. AAPG Memoir / M. T. Halbouty (ed.). 1986. Vol. 40. P. 373–397.
25. Bozdoğan, N., Erten, T. Age and effects of Mardin uplift South-East Anatolia. – Turkey 8th Petroleum Congress, 1990. P. 207–227 [in Turkish].
26. Khalimov, E. M., Klimushin, I. M., Ferdman, L. I., Goldberg, I. S. Geological factors in the formation of deposits of natural bitumens // Int. Geol. Rev. 1985. Vol. 27, No. 2. P. 187–193.
doi:10.1080/00206818509466404
27. Bustin, R. M., Cameron, A. R., Grieve, D. A., Kalkreuth, W. D. Coal Petrology: Its Principles, Methods and Aapplications (Short Course Notes). Vol. 3, 3rd ed. – Geological Association of Canada, 1989. 278 p.
28. Espitalié, J., Madec, M., Tissot, B., Menning, J. J., Leplat, P. Source rock characterization method for petroleum exploration. – Proc. Ninth. Annual Offshore Technology Conf. 1977. Vol. 3. P. 439–448.
29. Espitalié, J., Deroo, G., Marquis, F. Rock-Eval pyrolysis and its applications. Part 2. // Rev. Inst. Fr. Pét. 1985. Vol. 40, No. 6. P. 755–784.
30. Peters, K. E. Guidelines for evaluating petroleum source rock using programmed pyrolysis // Am. Assoc. Petr. Geol. Bull. 1986. Vol. 70. P. 318–329.
31. Altun, N. E., Hicyılmaz, C., Kok, M. V. Effect of particle size and heating rate on the pyrolysis of Silopi asphaltite // J. Anal. Appl. Pyrol. 2003. Vol. 67, No. 2. P. 369–379.
doi:10.1016/S0165-2370(02)00075-X
32. Kok, M. V., Pamir, R. Pyrolysis kinetics of oil shales determined by DSC and TG/DTG // Oil Shale. 2003. Vol. 20, No. 1. P. 57–68.
33. Tonbul, Y., Saydut, A.Thermal behavior and pyrolysis of Avgamasya asphaltite // Oil Shale. 2007. Vol. 24, No. 4. P. 547–560.
34. Yalçın Erik, N., Özçelik, O., Altunsoy, M., İlleez, H. İ. Source-rock hydrocarbon potential of the Middle Triassic-Lower Jurassic Cudi Group units, Eastern Southeast Turkey // Int. Geol. Rev. 2005. Vol. 47, No. 4. P. 398–419.doi:10.2747/0020-6814.47.4.398