ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Engineering
Buckling of elastic beams by the Haar wavelet method; pp. 271–284
PDF | doi: 10.3176/eng.2011.3.07

Author
Ülo Lepik
Abstract

The Haar wavelet method is applied for solving different problems of buckling of elastic beams. Solutions are given for the following problems: (i) beams with intermediate supports, (ii) crack simulation, (iii) beams with variable cross-section, (iv) buckling and vibrations of beams on an elastic foundation. Numerical results for seven test examples are presented. It follows from the calculations that the accuracy of the results is high even in the case of a small number of calculation points. In most cases the proposed method is mathematically simpler in comparison with the conventional approaches.

References

  1. Diaz, L., Martin, M. T. and Vampa, V. Daubechies wavelet beam and plate finite elements. Finite Elem. Analysis and Design, 2009, 45, 200–209.
http://dx.doi.org/10.1016/j.finel.2008.09.006

  2. Chen, X., Xiang, J., Li, B. and He, Z. A study of multiscale wavelet-based elements for adaptive finite elements analysis. Adv. Eng. Software, 2010, 41, 196–205.
http://dx.doi.org/10.1016/j.advengsoft.2009.09.008

  3. Glabisz, W. The use of Walsh-wavelet packets in linear boundary value problems. Comput. Struct., 2004, 82, 131–141.
http://dx.doi.org/10.1016/j.compstruc.2003.10.004

  4. Zhou, Y.-H. and Zhou, J. A modified wavelet approximation of deflections for solving PDEs of beams and square thin plates. Finite Elements in Analysis and Design}, 2008, 44, 773–783.
http://dx.doi.org/10.1016/j.finel.2008.05.001

  5. Eliashakoff, I. and Guede, Z. A remarcable nature of the effect of boundary conditions on closed-form solutions for vibrating inhomogeneous Bernoulli–Euler beams. Chaos, Solitons Fractals, 2001, 12, 659–704.
http://dx.doi.org/10.1016/S0960-0779(00)00009-6

  6. Lin, H.-P. and Chang, S. C. Free vibration analysis of multi-span beams with intermediate flexible constraints. J. Sound Vibr., 2005, 281, 155–169.
http://dx.doi.org/10.1016/j.jsv.2004.01.010

  7. Xu, Y. and Zhou, D. Elasticity solution of multispan beams with variable thickness under static loads. Appl. Math. Modeling, 2009, 33, 2951–2966.
http://dx.doi.org/10.1016/j.apm.2008.10.027

  8. Ayvas, Y. and Özgan, K. Application of modified Vlasov model to the free vibration analysis of beams resting on elastic foundations. J. Sound Vibr., 2002, 255, 111–127.
http://dx.doi.org/10.1006/jsvi.2001.4143

  9. Chen, C.-W. Vibrations of prismatic beams on an elastic foundation by the differential quadrature element method. J. Comput. Struct., 2000, 77, 1–9.
http://dx.doi.org/10.1016/S0045-7949(99)00216-3

10. Eliashakoff, I. Some unexpected results in vibration of non-homogeneous beams on elastic foundation. Chaos, Solitons Fractals, 2001, 12, 2177–2218.
http://dx.doi.org/10.1016/S0960-0779(00)00123-5

11. Wang, Q. and Deng, X. Damage detection with spacial wavelets. Int. J. Solids Struct., 1999, 36, 3443–3468.
http://dx.doi.org/10.1016/S0020-7683(98)00152-8

12. Quek, S.-T., Wang, Q., Zhang, L. and Ang, K.-K. Sensitivity analysis of crack detection in beams by wavelet technique. Int. J. Mech. Sci., 2001, 43, 2899–2910.
http://dx.doi.org/10.1016/S0020-7403(01)00064-9

13. Gentile, A. and Messina, A. On the continuous wavelet transforms applied to discrete vibrational data for detecting open cracks in damaged beams. Int. J. Solids Struct., 2003, 40, 295–315.
http://dx.doi.org/10.1016/S0020-7683(02)00548-6

14. Kim, B. H., Park, T. and Voyiadjis, G. Z. Damage estimation of beam-like structures using the multi-resolution analysis. Int. J. Solids Struct., 2006, 43, 4238–4257.
http://dx.doi.org/10.1016/j.ijsolstr.2005.07.022

15. Timoshenko, S. Theory of Elastic Stability. McGraw-Hill, 1936.

16. Lepik, Ü. Solving integral and differential equations by the aid of nonuniform Haar wavelets. Appl. Math. Comput., 2008, 198, 326–332.
http://dx.doi.org/10.1016/j.amc.2007.08.036

17. Karaagac, C., Örtürk, H. and Sabuncu, M. Free vibrations and lateral buckling of a cantilever slender beam with an edge crack: Experimental and numerical studies. J. Sound Vibr., 2009, 326, 235–250.
http://dx.doi.org/10.1016/j.jsv.2009.04.022

18. Skrinar, M. On the application of a simply computational model for slender transversely cracked beams in buckling problems. Comp. Materials Sci., 2007, 39, 242–249.
http://dx.doi.org/10.1016/j.commatsci.2006.01.029

Back to Issue

Back issues