ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Engineering
High-temperature cyclic impact abrasion testing: wear behaviour of single and multiphase materials up to 750 °C; pp. 359–366
PDF | doi: 10.3176/eng.2009.4.13

Authors
Ewald Badisch, Horst Winkelmann, Friedrich Franek
Abstract
The aim of this work was to find correlations between selected microstructural para­meters such as hardness, content of hard phases and coarseness of microstructure and the wear resistance at high temperatures. Two materials with different microstructures, showing promising high-temperature wear performance, were investigated under combined impact abrasion conditions at enhanced temperatures using novel high-temperature cyclic impact abrasion testing apparatus. Results indicate that the wear rate increases with the increase of the test temperature. In multiphase materials, the matrix ability to bind hard phases at high temperatures as well as the matrix stability at high temperatures strongly influence the wear resistance. The test results indicate that at higher temperatures the ability to form compound layers may have a positive effect on wear performance.
References

 1. Badisch, E., Kirchgassner, M., Polak, R. and Franek, F. The comparison of wear properties of different Fe-based hardfacing alloys in four kinds of testing methods. Tribotest, 2008, 14, 225–233.
doi:10.1002/tt.61

  2. Kirchgassner, M., Badisch, E. and Franek, F. Behaviour of iron-based hardfacing alloys under abrasion and impact. Wear, 2008, 265, 772–779.
doi:10.1016/j.wear.2008.01.004

  3. Powell, G. L. F., Carlson, R. A. and Randle, V. The morphology and microtexture of M7C3 carbides in Fe–Cr–C and Fe–Cr–C–Si alloys of near eutectic composition. J. Mater. Sci., 1994, 29, 4889–4896.
doi:10.1007/BF00356539

  4. Branagan, D. J. and Tang, Y. Development extreme hardness (> 15 GPa) in iron based nanocomposites. J. Compos. Part A, 2002, 33, 855–859.
doi:10.1016/S1359-835X(02)00028-3

  5. Badisch, E. and Mitterer, C. Abrasive wear of high speed steels: influence of abrasive particles and primary carbides on wear resistance. Tribol. Intern., 2003, 36, 765–770.
doi:10.1016/S0301-679X(03)00058-6

  6. Francucci, G., Sikora, J. and Dommarco, R. Abrasion resistance of ductile iron austempered by the two step process. J. Mater. Sci. Eng. A, 2008, 485, 46–54.
doi:10.1016/j.msea.2007.07.081

  7. Buchely, M. F., Gutierrez, J. C., Leon, L. M. and Toro, A. The effect of microstructure on abrasive wear of hardfacing alloys. Wear, 2005, 259, 52–61.
doi:10.1016/j.wear.2005.03.002

  8. Roy, M. Elevated temperature erosive wear of metallic materials. J. Phys. D Appl. Phys., 2006, 39, 101–124.
doi:10.1088/0022-3727/39/6/R01

  9. Roy, M., Ray, K. K. and Sundararajan, G. Erosion-oxidation interaction in Ni and Ni-20Cr alloy. Metal Mater. Trans., 2001, 32A, 1431–1451.
doi:10.1007/s11661-001-0232-5

10. Celik, O., Ahlatci, H., Kayali, E. S. and Cimenoglu, H. High temperature abrasive wear behavior of an as-cast ductile iron. Wear, 2005, 258, 189–193.
doi:10.1016/j.wear.2004.09.004

11. Straffelini, G., Trabucco, D. and Molinari, A. Oxidative wear of heat-treated steels. Wear, 2001, 250, 485–491.
doi:10.1016/S0043-1648(01)00661-5

12. Winkelmann, H., Badisch, E., Kirchgaßner, M. and Danninger, H. Wear mechanisms at high temperatures. Part 1: Wear mechanisms of different Fe-based alloys at elevated tem­pera­tures. Tribol. Lett., 2009, 34, 155–166.
doi:10.1007/s11249-009-9421-y

Back to Issue

Back issues