eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering

Refined models and control solutions for mechatronics design of mobile robotic platforms; pp. 212–238

Full article in PDF format | doi: 10.3176/eng.2013.3.04

Farhan A. Salem


This paper presents new refined mathematical, Simulink and function block models for mobile robots, and some considerations regarding mechatronics design and control solutions. The presented models are mainly intended to be used to help in facing the two top challenges in developing mechatronic mobile robotic systems: firstly, early identifying system level problems and ensuring that all design requirements are met, and secondly, to be used for research purposes and application in educational process. The presented models, blocks and designs were created and verified using MATLAB/Simulink software. Testing models for achieving desired design specifica­tions shows the applicability and accuracy of the design. The results also show that PID, PI and PI with deadbeat response are applicable for achieving desired smooth speed of a given mobile robot with acceptable stability and fastness of response.


  1. Mahfouz, A. A., Mohammed, M. K. and Salem, F. A. Modeling, simulation and dynamics analysis issues of electric motor, for mechatronics applications, using different approaches and verification by MATLAB/Simulink (I). Int. J. Intell. Syst. Appl., 2013, 5, 39–57.

  2. Mahfouz, A. A., Ayman, A. A. and Salem, F. A. Mechatronics design of a mobile robot system. Int. J. Intell. Syst. Appl., 2013, 5, 23–36.

  3. Nouri, B. M. Y. Modeling and control of mobile robot. In Proc. First International Conference on Modeling, Simulation and Applied Optimization. Sharjah, U.A.E., 2005.

  4. Hanzell, J., Jurišica, L., Kľúčik, M., Vitko, A. and Strigáč, M. Experimental mobile robotic systems. In Proc. 4th International Conference “Modeling of Mechanical and Mechatronics Systems”. Košice, Slovak Republic, 2011, 20–22.

  5. Dezky-Kardoss, E. S. and Kiss, B. L. Design and control of a 2-DOF positioning robot. In Methods and Models in Automation and Robotics. Miedzyzdroje, Poland, 2004, 18–26.

  6. Sharifian, M. B. B., Rahnavard, R. and Delavari, H. Velocity control of DC motor based intelligent methods and optimal integral state feedback controller. Int. J. Computer Theory Eng., 2009, 1, 1793–8201.

  7. Klančar, G., Matko, D. and Blažič, S. Mobile robot control on a reference path. In Proc. 13th Mediterranean Conference on Control and Automation. Limassol, Cyprus, 2005, 1343–1348.

  8. Tao Gong and Zixing Cai. Mobile immune-robot model. In Proc. International Conference on Robotics, Intelligent Systems and Signal Processing. Changsha, China, 2003, vol. 2, 1091–1096.

  9. Nwe, A. A., Aung, W. P. and Myint, Y. M. Software implementation of obstacle detection and for wheeled mobile robot avoidance system. World Academy of Science, Engineering and Technology, 2008, 42, 572–577.

10. Dorf, R. C. and Bishop, R. H. Modern Control Systems, 9th ed. Prentice-Hall, New Jersey, 2001.

11. Salem, F. A. and Mahfouz, A. A. Modeling and controller design for PMDC motor, using different control strategies and verification using MATLAB/Simulink (II). Forthcoming.

12. Alasooly, H. Control of DC motor using different control strategies. Global J. Technol. Optimization, 2011, 2, 21–28.

13. Aung, W. P. Analysis on modeling and Simulink of DC motor and its driving system used for wheeled mobile robot. World Academy of Science, Engineering and Technology, 2007, 32, 299–306

14. Shah, B. Field Oriented Control of Step Motors. MSc. Thesis, SVMITB Haruch, India, 2004.

15. Gao, D. W. and Emadi, A. Modeling and simulation of electric and hybrid vehicles. Proc. IEEE, 2007, 95, 729–745.

16. Kurfess, T. R. Robotic and Automation Handbook. Washington, D.C., US, 2005.

17. Shahinpoor, M. A Robot Engineering Textbook. Happer & Row Publishers, NY, 1987.

18. MathWorks, 2001. Introduction to MATLAB, the MathWorks, Inc. Control System Toolbox, MathWorks, Inc.

Back to Issue