eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering

Green’s function for the deflection of non-prismatic simply supported beams by an analytical approach; pp. 336–351

Full article in PDF format | doi: 10.3176/eng.2012.4.05

Mehdi Veiskarami, Solmaz Pourzeynali


The influence line for deflection of non-prismatic simply supported beams has been developed. The methodology primarily comprises the determination of the Green’s function of the governing differential equation and extension of the results to typical problems. The method of inverse operator along with the orthogonal eigenfunction expansion was employed and the final form of the solution is presented in an integral form, which can be solved by either direct methods or numerical techniques. An example problem and the closed-form solution for a particular class of non-prismatic beams, very often applied in practice, have been presented.


  1. Castigliano, C. A. P. The Theory of Equilibrium of Elastic Systems and Its Applications. Dover, New York, 1966.

  2. Timoshenko, S. and Young, D. H. Theory of Structures. McGraw-Hill, New York, 1965.

  3. Hibbeler, R. C. Structural Analysis, 6th ed. Prentice-Hall, 2006.

  4. Popov, E. P. Mechanics of Materials, 2nd ed. Prentice-Hall, 1996.

  5. Attarnejad, R., Jandaghi Semnani, S. and Shahba, A. Basic displacement functions for free vibration analysis of non-prismatic Timoshenko beams. Finite Elements in Analysis and Design, 2010, 46, 916–929.

  6. Karabalis, D. L. and Beskas, D. E. Static, dynamic and stability analysis of structures composed of tapered beams. Computers Struct., 1983, 16, 731–748.

  7. Eisenberger, M. Explicit stiffness matrices for non-prismatic members. Computers Struct., 1985, 20, 715–720.

  8. Ganga Rao, H. V. S. and Spyrakos, C. C. Closed form series solutions of boundary value problems with variable properties. Computers Struct., 1986, 23, 211–215.

  9. Eisenberger, M. and Reich, Y. Static, dynamic and stability analysis of non-uniform beams. Computers struct., 1989, 31, 567–573.

10. Lee, S. Y., Ke, H. Y. and Kuo, Y. H. Exact static deflection of a non-uniform Bernoulli–Euler beam with general elastic end restraints. Computers Struct., 1990, 36, 91–97.

11. Lee, S. Y. and Kuo, Y. H. Static analysis of non-uniform Timoshenko beams. Computers Struct., 1993, 46, 813–820.

12. Al-Gahtani, B. H. and Khan, M. S. Exact analysis of nonprismatic beams. J. Eng. Mech., 1998, 124, 1290–1293.

13. Esmailzadeh, E. and Ohadi, R. Vibration and stability analysis of non-uniform Timoshenko beams under axial and distributed tangential loads. J. Sound Vibration, 2000, 236, 443–456.

14. Failla, G. and Santini, A. On Euler–Bernoulli discontinuous beam solutions via uniform-beam Green’s functions. Int. J. Solids Struct., 2007, 44, 7666–7687.

15. Hsu, J.-C., Lai, H.-Y. and Chen, C. K. Free vibration of non-uniform Euler–Bernoulli beams with general elasticity and constraints using Adomian modified decomposition method. J. Sound Vibration, 2008, 318, 965–981.

16. Mehri, B., Davar, A. and Rahmani, O. Dynamic Green function solution of beams under a moving load with different boundary conditions. Scientia Iranica, 2009, 16, 273–279.

17. Roach, G. F. Green’s Functions Introductory Theory with Applications. Von Nostrand Rein­hold, London, 1970.

18. Dirac, P. The Principles of Quantum Mechanics. Clarendon Press, Oxford, 1947.

19. Duffy, D. G. Green’s Functions with Applications. CRC Press, 2001.

20. Schwartz, L. Théorie des Distributions. Hermann, Paris, 1950.

21. Wylie, C. R. and Barrett, L. C. Advanced Engineering Mathematics, 5th ed. McGraw-Hill, New York, 1982.

Back to Issue