eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering
Effect of high-force impulse loads on the modification of mechanical properties of heat-resistant steel after service; pp. 251–258
PDF | doi: 10.3176/eng.2012.3.10

Mykola Chausov, Pavlo Maruschak, Andriy Pylypenko, Fjodor Sergejev, Oleksandra Student

The main regularities are found in the deformation and failure of heat-resistant steel 25Cr1Mo1V after service under static load and complex loading mode “static load – additional impulse loading – static load”, when dynamic unbalanced processes are implemented. The fracto­graphic investigations performed confirmed the revealed regularities in the modification of the mechanical properties of the steel 25Cr1Mo1V under the action of impulse loads of identical intensity at different levels of the preliminary static deformation.


  1. Balokhonov, R. R., Romanova, V. A., Schmauder, S. and Makarov, P. V. Simulation of meso–macro dynamic behavior using steel as an example. Comput. Mater. Sci., 2003, 28, 505–511.

  2. Carrol, М. М. and Holt, А. С. Static and dynamic pore collaps relations for ductile porous materials. J. Appl. Phys., 1972, 43, 1626–1635.

  3. Mikkola, M. G., Tuomala, M. and Sinisalo, H. Comparison of numerical integration methods in the analysis of impulsively loaded elastoplastic and viscoplastic structures. Int. J. Comput. Struct., 1981, 14, 469–476.

  4. Tan, J. C. and Tan, M. J. Super plasticity and grain boundary sliding characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet. Mater. Sci. Eng. A, 2009, 339, 81–89.

  5. Lee, Sh., Chiang, C., Chu, C. and Hsu, C. Inter-granular liquid aiding grain boundary sliding in superplastic deformation of fine-grained ZK 60 Mg alloy. Trans. Nonferrous Met. Soc. China, 2010, 20, 576–579.

  6. Chausov, N. G. and Pilipenko, A. P. Law of deformation in processes and fracture of plastic steel from the point of view of dynamic overloading. Mechanika, 2005, 54, 24–29.

  7. Chausov, N. G. and Pilipenko, A. P. Influence of dynamic overloading on fracture kinetics of metals at the final stages of deformation. Mechanika, 2004, 48, 13–18.

  8. Zasimchuk, E. E., Markashova, L. I., Turchak, T. V., Chausov, N. G., Pylypenko, A. P. and Paratsa, V. N. Peculiarities of structural transformation in plastic materials under abrupt changes in loading conditions. Phys. Mesomech., 2009, 12, 175–179.

  9. Yasniy, P., Maruschak, P., Bishchak, R., Hlado, V. and Pylypenko, A. Damage and fracture of heat resistance steel under cyclic thermal loading. Theor. Appl. Fracture Mech., 2009, 52, 22–25.

10. Yasnii, P. V., Maruschak, P. O., Pylypenko, A. P., Bishchak, R. T., Zakiev, I. M. and Hlad¢o, V. B. Diagnostics of the serviceability of heat-resistant steels of the metallurgical equipment after thermal cycling. Mater. Sci., 2011, 47, 224–235.

11. Yasniy, P., Maruschak, P., Hlado, V., Hutsaylyuk, V. and Bischak, R. Non-destructive analysis of heat-resistant steel applied to continuous caster roll after plastic deformation. In Proc. 5th International Workshop ITELMS¢ 2010. Panevėžys, 2010. KUT, Kaunas, 27–30.

12. Yasniy, P. V., Maruschak, P. O., Panin, S. V. and Bishchak, R. T. Scale levels of deformation and fracture and mechanical properties of 25Cr1Mo1V steel before and after nonisothermic loading. Phys. Mesomech., 2011, 14, 57–65.

13. Balokhonov, R. R., Makarov, P. V., Romanova, V. A., Smolin, I. Yu. and Savlevich, I. V. Numerical modelling of multi-scale shear stability loss in polycrystals under shock wave loading. J. de Physique IV, 2000, 10, 515–521.

Back to Issue

Back issues