eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering

Analysis of technological parameters through response surface methodology in machining hardened X38CrMoV5-1 using whisker ceramic tool (Al2O3+SiC); pp. 26–41

Full article in PDF format | doi: 10.3176/eng.2012.1.03

Brahim Fnides, Sofiane Berkani, Mohamed Athmane Yallese, Smail Boutabba, Jean-François Rigal, Salim Daffri


This experimental study is an attempt to model technological parameters such as cutting forces and surface roughness in hard turning of X38CrMoV5-1 hot work tool steel hardened to 50 HRC. This steel is free from tungsten on Cr-Mo-V basis, insensitive to temperature changes and has a high wear resistance. It is employed for the manufacture of helicopter rotor blades and forging dies. The workpiece is machined by a whisker ceramic tool (insert CC670 of chemical composition 75%Al2O3+25%SiC) under dry conditions. Based on 33 full factorial design, a total of 27 tests are carried out. The range of each parameter is set at three different levels, namely low, medium and high. Mathematical models were deduced by applying analysis of variance (ANOVA) and through factor interaction graphs in the response surface methodology (RSM) in order to express the influence degree of each cutting regime element on cutting force components and surface roughness criteria. The results indicate that the depth of cut is the dominant factor affecting cutting force components. The feed rate influences tangential cutting force more than radial and axial forces. The cutting speed affects radial force more than tangential and axial forces. The results also reveal that feed rate is the dominant factor affecting surface roughness, followed by cutting speed. As for the depth of cut, its effect is not very important. These mathematical models would be helpful in selecting cutting variables for optimization of hard cutting process.


  1. Fnides, B., Yallese, M. A., Mabrouki, T. and Rigal, J.-F. Surface roughness model in turning hardened hot work steel using mixed ceramic tool. Mechanika. Kaunas: Technologija, 2009, 3(77), 68–73.

  2. Qamar, S. Z. Effect of heat treatment on mechanical properties of H11 tool steel. J. Achievements Mater. Manufact. Eng., 2009, 35(2), 115–120.

  3. Dewes, R. C. and Aspinwall, D. K. A review of ultra high speed milling of hardened steels. J. Mater. Process. Technol., 1997, 69, 1–17.

  4. Ozel, T., Hsu, T. K. and Zeren, E. Effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel. Int. J. Adv. Manufact. Technol., 2005, 25, 262–269.

  5. Strafford, K. N. and Audy, J. Indirect monitoring of machinability in carbon steels by measure­ment of cutting forces. J. Mater. Process. Technol., 1997, 67, 150–156.

  6. Luo, S. Y., Liao, Y. S. and Tsai, Y. Y. Wear characteristics in turning high hardness alloy steel by ceramic and CBN tools. J. Mater. Process. Technol., 1999, 88, 114–121.

  7. Arsecularatne, J. A., Zhang, L. C., Montross, C. and Mathew, P. On machining of hardened AISI D2 steel with PCBN tools. J. Mater. Process. Technol., 2006, 171, 244–252.

  8. Palanikumar, K., Mata, F. and Paulo Davim, J. Analysis of surface roughness parameters in turning of FRP tubes by PCD tool. J. Mater. Process. Technol., 2008, 204, 469–474.

  9. Ozel, T., Karpat, Y., Figueira, L. and Paulo Davim, J. Modelling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts. J. Mater. Process. Technol., 2007, 189, 192–198.

10. Aslan, E., Camuşcu, N. and Birgören, B. Design optimization of cutting parameters when turning hardened AISI 4140 steel (63 HRC) with Al2O3+TiCN mixed ceramic tool. Mater. Des., 2007, 28, 1618–1622.

11. Yallese, M. A., Chaoui, K., Zeghib, N., Boulanouar, L. and Rigal, J.-F. Hard machining of hardened bearing steel using cubic boron nitride tool. J. Mater. Process. Technol., 2009, 209, 1092–1104.

12. SANDVIK Coromant. Catalogue Général, Outils de coupe Sandvik Coromant, Tournage – Fraisage – Perçage – Alésage – Attachments, 2009.

13. Paulo Davim, J. and Figueira, L. Machinability evaluation in hard turning of cold work tool steel (D2) with ceramic tools using statistical techniques. J. Mater. Des., 2007, 28, 1186–1191.

14. Noordin, M. Y., Venkatesh, V. C., Sharif, S., Elting, S. and Abdullah, A. Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. J. Mater. Process. Technol., 2004, 145, 46–58.

15. Gaitonde, V. N., Karnik, S. R., Figueira, L. and Paulo Davim, J. Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts. Int. J. Refract. Met. Hard Mater., 2009, 27, 754–763.

16. Jackson, M. J., Robinson, G. M. and Morrell, J. S. Machining M42 tool steel using nano­structured coated cutting tools. J. Achiev. Mater. Manufact. Eng., 2007, 23, 83–86.

17. Stoić, A., Kopač, J., Ergić, T. and Duspar, M. Turning conditions of Ck 45 steel with alternate hardness zones. J. Achiev. Mater. Manufact. Eng., 2009, 34, 87–94.

18. Zawada-Tomkiewicz, A. Analysis of surface roughness parameters achieved by hard turning with the use of PCBN tools. Estonian J. Eng., 2011, 17, 88–99.

19. Fnides, B., Yallese, M. A., Mabrouki, T. and Rigal, J.-F. Application of response surface methodology for determining cutting force model in turning hardened AISI H11 hot work tool steel. SADHANA-APES, 2011, 36, 109–123.

20. Aouici, H., Yallese, M. A., Fnides, B., Chaoui, K. and Mabrouki, T. Modeling and optimization of hard turning of X38CrMoV5-1 steel with CBN tool: Machining parameters effects on flank wear and surface roughness. J. Mech. Sci. Technol., 2011, 25, 2843–2851.

21. Aouici, H., Yallese, M. A., Fnides, B. and Mabrouki, T. Machinability investigation in hard turning of AISI H11 hot work steel with CBN tool. Mechanika. Kaunas: Technologija, 2010, 6(86), 71–77.

Back to Issue