eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering
Nonlinear interaction of large-amplitude unidirectional waves in shallow water; pp. 289–300
PDF | doi: 10.3176/eng.2011.4.02

Ira Didenkulova, Efim Pelinovsky, Artem Rodin

Nonlinear interaction of long unidirectional waves is studied numerically in the frame­work of nonlinear shallow water theory in a basin of constant depth. The interaction of two initially separated unidirectional waves occurs only when the waves (transformed into the shock waves) overtake each other. It is demonstrated that the interaction of two large-amplitude wave crests results in the formation of one shock wave of triangular shape, which is qualitatively similar to the outcome of the nonlinear interaction of two weak-amplitude waves. The formation of shock waves from initially negative disturbances (wave troughs) is accompanied by the generation of reflected waves of negative polarity. These waves additionally influence the process of interaction. The interaction of waves of opposite polarities is possible only when the leading wave is negative.


  1. Whitham, G. B. Linear and Nonlinear Waves. Wiley, New York, 1974.

  2. Drazin, P. G. and Johnson, R. S. Solitons: an Introduction. Cambridge University Press, 1989.

  3. Engelbrecht, J. Nonlinear Wave Dynamics: Complexity and Simplicity. Kluwer, 1997.

  4. Murawski, K. Analytical and Numerical Methods for Wave Propagation in Fluid Media. World Scientific, 2002.

  5. Zabusky, N. and Kruskal, M. D. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 1965, 15, 240–243.

  6. Zakharov, V. E. Kinetic equation for solitons. Sov. Phys. JETP, 1971, 33, 538–541.

  7. Salupere, A., Maugin, G. A., Engelbrecht, J. and Kalda, J. On the KdV soliton formation and discrete spectral analysis. Wave Motion, 1996, 123, 49–66.

  8. Osborne, A. R., Serio, M., Bergamasco, L. and Cavaleri, L. Solitons, cnoidal waves and non­linear interactions in shallow-water ocean surface waves. Physica D, 1998, 123, 64–81.

  9. Kit, E., Shemer, L., Pelinovsky, E., Talipova, T., Eitan, O. and Jiao, H. Nonlinear wave group evolution in shallow water. J. Waterw. Port Coast. Ocean Eng., 2000, 126, 221–228.

10. Grimshaw, R., Pelinovsky, D., Pelinovsky, E. and Talipova, T. Wave group dynamics in weakly nonlinear long-wave models. Physica D, 2001, 159, 235–257.

11. Salupere, A., Peterson, P. and Engelbrecht, J. Long-time behavior of soliton ensembles. Math. Comp. Simul., 2003, 62, 137–147.

12. Pelinovsky, E. and Sergeeva, A. Numerical modeling of the KdV random wave field. Europ. J. Mech. B/Fluid, 2006, 25, 425–434.

13. Soomere, T. Solitons interactions. In Encyclopedia of Complexity and Systems Science (Meyers, R. A., ed.). Springer, 2009, vol. 9, 8479–8504.

14. Sergeeva, A., Pelinovsky, E. and Talipova, T. Nonlinear random wave field in shallow water: variable Korteweg–de Vries framework. Nat. Hazards Earth Syst. Sci., 2011, 11, 323–330.

15. Fokas, A. S. and Liu, Q. M. Asymptotic integrability of water waves. Phys. Rev. Lett., 1996, 77, 2347–2351.

16. Marchant, T. R. and Smyth, N. F. Soliton interaction for the extended Korteweg-de Vries equation. J. Appl. Math., 1996, 56, 157–176.

17. Massel, S. R. Hydrodynamics of the Coastal Zone. Elsevier, Amsterdam, 1989.

18. Caputo, J.-G. and Stepanyants, Y. A. Bore formation, evolution and disintegration into solitons in shallow inhomogeneous channels. Nonlin. Process. Geophys., 2003, 10, 407–424.

19. Tsuji, Y., Yanuma, T., Murata, I. and Fujiwara, C. Tsunami ascending in rivers as an undular bore. Natural Hazards, 1991, 4, 257–266.

20. Zahibo, N., Pelinovsky, E., Talipova, T., Kozelkov, A. and Kurkin, A. Analytical and numerical study of nonlinear effects at tsunami modelling. Appl. Math. Comp., 2006, 174, 795–809.

21. Didenkulova, I. I., Zahibo, N., Kurkin, A. A., Levin, B. V., Pelinovsky, E. N. and Soomere, T. Runup of nonlinearly deformed waves on a coast. Dokl. Earth Sci., 2006, 411, 1241–1243.

22. Didenkulova, I. I., Zahibo, N., Kurkin, A. A. and Pelinovsky, E. N. Steepness and spectrum of a nonlinearly deformed wave on shallow waters. Izvestiya Atmos. Ocean. Phys., 2006, 42, 773–776.

23. Didenkulova, I., Pelinovsky, E., Soomere, T. and Zahibo, N. Runup of nonlinear asymmetric waves on a plane beach. In Tsunami and Nonlinear Waves (Kundu, A., ed.). Springer, 2007, 175–190.

24. Zahibo, N., Didenkulova, I., Kurkin, A. and Pelinovsky, E. Steepness and spectrum of non­linear deformed shallow water wave. Ocean Eng., 2008, 35, 47–52.

25. Pelinovsky, E. N. and Rodin, A. A. Nonlinear deformation of a large-amplitude wave on shallow water. Doklady Physics, 2011, 56, 305–308.

26. Rudenko, O. V. and Soluyan, S. I. Theoretical Foundations of Nonlinear Acoustics. Consultants Bureau, New York, 1977.

27. Gurbatov, S., Malakhov, A. and Saichev, A. Nonlinear Random Waves and Turbulence in Non­dispersive Media: Waves, Rays and Particles. Manchester University Press, Manchester, 1991.

28. Rudenko, O. V., Gurbatov, S. N. and Saichev, A. I. Waves and Structures in Nonlinear Media With­out Dispersion. Applications to Nonlinear Acoustics. Nauka, Moscow, 2008 (in Russian).

29. LeVeque, R. J. Finite-Volume Methods for Hyperbolic Problems. Cambridge Univ. Press, Cambridge, 2004.

30. Engelbrekht, Yu., Fridman, V. and Pelinovsky, E. Nonlinear Evolution Equations. Longman, New York, 1988.

31. Volyak, K. I., Gorshkov, A. S. and Rudenko, O. V. Nonlinear waves in the ocean. Selected works. Vestn. Mosk. Univ. Ser. Fiz., Astron., 1975, 1 (in Russian).

Back to Issue

Back issues