eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering

Linking wave loads with the intensity of erosion along the coasts of Latvia; pp. 359–374

Full article in PDF format | doi: 10.3176/eng.2011.4.06

Tarmo Soomere, Maija Viška, Jānis Lapinskis, Andrus Räämet


Numerically estimated wave properties and the associated closure depth along the eastern Baltic Sea coast from the Sambian (Samland) Peninsula up to Pärnu Bay in the Gulf of Riga are compared against the existing data about accumulation and erosion. Typical values of the closure depth are about 5–6 m (maximum 6.58 m) at the open Baltic Sea coast, 3–4 m in the Gulf of Riga and 2–2.5 m in semi-sheltered smaller bays. The areas of intense accumulation or erosion (especially the areas of their high variability) generally coincide with the sections, hosting high wave intensity, except for a few locations, dominated by anthropogenic impact. It is shown that the longshore variations in wave intensity (or closure depth) can be used to identify the location of major accumulation and erosion domains. The sections that host the largest change in the wave height along the coast reveal erosion or accumulation features, depending on the predominant wave approach direction.


  1. Leppäranta, M. and Myrberg, K. Physical Oceanography of the Baltic Sea. Springer Praxis, Berlin, Heidelberg, 2009.

  2. Soomere, T. Extremes and decadal variations of the northern Baltic Sea wave conditions. In Extreme Ocean Waves (Pelinovsky, E. and Kharif, C., eds). Springer, 2008, 139–157.

  3. Harff, J., Lemke, W., Lampe, R., Luth, F., Lübke, H., Meyer, M., Tauber, F. and Schmolcke, U. The Baltic Sea coast-A model of interrelations among geosphere, climate, and anthropo­sphere. In Coastline Changes: Interrelation of Climate and Geological Processes. Geo­logical Society of America Special Papers, 2007, 426, 133–142.

  4. Labuz, T. A. The West Pomerania coastal dunes – alert state of their development. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 2009, 160, 113–122.

  5. Zaromskis, R. and Gulbinskas, S. Main patterns of coastal zone development of the Curonian Spit, Lithuania. Baltica, 2010, 23, 149–156.

  6. Eberhards, G. and Lapinskis, J. Processes on the Latvian Coast of the Baltic Sea. Atlas. University of Latvia, Riga, 2008.

  7. Orviku, K., Jaagus, J., Kont, A., Ratas, U. and Rivis, R. Increasing activity of coastal processes associated with climate change in Estonia. J. Coast. Res., 2003, 19, 364–375.

  8. Ryabchuk, D., Kolesov, A., Chubarenko, B., Spiridonov, M., Kurennoy, D. and Soomere, T. Coastal erosion processes in the eastern Gulf of Finland and their links with geological and hydrometeorological factors. Boreal Environ. Res., 2011, 16 (Suppl. A), 117–137.

  9. Eberhards, G., Lapinskis, J. and Saltupe, B. Hurricane Erwin 2005 coastal erosion in Latvia. Baltica, 2006, 19, 10–19.

10. Leont¢yev, I. O. Budget of sediments and forecast of long-term coastal changes. Oceanology, 2008, 48, 428–437.

11. Suursaar, Ü., Jaagus, J., Kont, A., Rivis, R. and Tõnisson, H. Field observations on hydro­dynamic and coastal geomorphic processes off Harilaid Peninsula (Baltic Sea) in winter and spring 2006–2007. Estuar. Coast. Shelf Sci., 2008, 80, 31–41.

12. Orviku, K., Suursaar, Ü., Tõnisson, H., Kullas, T., Rivis, R. and Kont, A. Coastal changes in Saaremaa Island, Estonia, caused by winter storms in 1999, 2001, 2005 and 2007. J. Coast. Res., 2009, 25, (SI 56), 1651–1655.

13. Tõnisson, H., Suursaar, Ü., Orviku, K., Jaagus, J., Kont, A., Willis, D. A. and Rivis, R. Changes in coastal processes in relation to changes in large-scale atmospheric circulation, wave parameters and sea levels in Estonia. J. Coast. Res., 2011, 27, (SI 64), 701–705.

14. Broman, B., Hammarklint, T., Rannat, K., Soomere, T. and Valdmann, A. Trends and extremes of wave fields in the north-eastern part of the Baltic Proper. Oceanologia, 2006, 48 (S), 165–184.

15. Soomere, T. and Zaitseva, I. Estimates of wave climate in the northern Baltic Proper derived from visual wave observations at Vilsandi. Proc. Estonian Acad. Sci. Eng., 2007, 13, 48–64.

16. Zaitseva-Pärnaste, I., Suursaar, Ü., Kullas, T., Lapimaa, S. and Soomere, T. Seasonal and long-term variations of wave conditions in the northern Baltic Sea. J. Coast. Res., 2009, 25, (SI 56), 277–281.

17. Räämet, A. and Soomere, T. The wave climate and its seasonal variability in the northeastern Baltic Sea. Estonian J. Earth Sci., 2010, 59, 100–113.

18. Soomere, T. and Räämet, A. Long-term spatial variations in the Baltic Sea wave fields. Ocean Sci., 2011, 7, 141–150.

19. Tuomi, L., Kahma, K. K. and Pettersson, H. Wave hindcast statistics in the seasonally ice-covered Baltic Sea. Boreal Environ. Res., 2011, 16, 1–22.

20. Soomere, T., Kask, A., Kask, J. and Healy, T. R. Modelling of wave climate and sediment transport patterns at a tideless embayed beach, Pirita Beach, Estonia. J. Marine Syst., 2008, 74, Suppl., S133–S146.

21. Kelpšaitė, L., Dailidiene, I. and Soomere, T. Changes in wave dynamics at the south-eastern coast of the Baltic Proper during 1993–2008. Boreal Environ. Res., 2011, 16 (Suppl. A), 220–232.

22. Eberhards, G., Grine, I., Lapinskis, J., Purgalis, I., Saltupe, B. and Torklere, A. Changes in Latvia’s seacoast (1935–2007). Baltica, 2009, 22, 11–22.

23. Johansson, M. M., Kahma, K. K., Boman, H. and Launiainen, J. Scenarios for sea level on the Finnish coast. Boreal Environ. Res., 2004, 9, 153–166.

24. Kont, A., Jaagus, J. and Aunap, R. Climate change scenarios and the effect of sea-level rise for Estonia. Global Planet. Change, 2003, 36, 1–15.

25. Pruszak, Z. and Zawadzka, E. Potential implications of sea-level rise for Poland. J. Coast. Res., 2008, 24, 410–422.

26. Tõnisson, H., Orviku, K., Jaagus, J., Suursaar, Ü., Kont, A. and Rivis, R. Coastal damages on Saaremaa Island, Estonia, caused by the extreme storm and flooding on January 9, 2005. J. Coast. Res., 2008, 24, 602–614.

27. Suursaar, Ü. and Kullas, T. Decadal changes in wave climate and sea level regime: the main causes of the recent intensification of coastal geomorphic processes along the coasts of Western Estonia? In Coastal Processes. WIT Transactions on Ecology and the Environ­ment, 2009, 126, 105–116.

28. Hanson, H. and Larson, M. Implications of extreme waves and water levels in the southern Baltic Sea. J. Hydraul. Res., 2009, 46, 292–302.

29. Zhang, W. Y., Harff, J., Schneider, R. and Wu, C. Y. Development of a modelling methodology for simulation of long-term morphological evolution of the southern Baltic coast. Ocean Dynam., 2010, 60, 1085–1114.

30. Dean, R. G. and Dalrymple, R. A. Coastal Processes with Engineering Applications. Cambridge University Press, 2002.

31. Soomere, T. and Healy, T. R. On the dynamics of “almost equilibrium” beaches in semi-sheltered bays along the southern coast of the Gulf of Finland. In The Baltic Sea Basin (Harff, J., Björck, S. and Hoth, P., eds). Springer, Heidelberg, 2011, 255–279.

32. Suursaar, Ü. Waves, currents and sea level variations along the Letipea-Sillamäe coastal section of the southern Gulf of Finland. Oceanologia, 2010, 52, 391–416.

33. Soomere, T. and Keevallik, S. Anisotropy of moderate and strong winds in the Baltic Proper. Proc. Estonian Acad. Sci. Eng., 2001, 7, 35–49.

34. Dean, R. G. Equilibrium beach profiles: characteristics and applications. J. Coast Res., 1991, 7, 53–84.

35. Kask, A., Soomere, T., Healy, T. R. and Delpeche, N. Rapid estimates of sediment loss for “almost equilibrium” beaches. J. Coast. Res., 2009, 25, (SI 56), 971–975.

36. Kartau, K., Soomere, T. and Tõnisson, H. Quantification of sediment loss from semi-sheltered beaches: a case study for Valgerand Beach, Pärnu Bay, the Baltic Sea. J. Coast. Res., 2011, 27, (SI 64), 100–104.

37. Houston, J. R. Simplified Dean’s method for beach-fill design. J. Waterw. Port. C. Div., 1996, 122, 143–146.

38. Birkemeier, W. A. Field data on seaward limit of profile change. J. Waterw. Port. C. Div., 1985, 111, 598–602.

39. Nicholls, R. J., Birkemeier, W. A. and Hallermeier, R. J. Application of the depth of closure concept. In Proc. 25th International Conference on Coastal Engineering. ASCE, Orlando, 1996, 3874–3887.

40. Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. and Jans­sen, P. A. E. M. Dynamics and Modelling of Ocean Waves. Cambridge University Press, 1994.

41. Mietus, M. (coordinator). The Climate of the Baltic Sea Basin. Marine meteorology and related oceanographic activities. Report No. 41. World Meteorological Organization, Geneva, 1998.

42. Lehmann, A., Getzlaff, K. and Harlass, J. Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009. Clim. Res., 2011, 46, 185–196.

43. Soomere, T., Zaitseva-Pärnaste, I. and Räämet, A. Variations in wave conditions in Estonian coastal waters from weekly to decadal scales. Boreal Environ. Res., 2011, 16 (Suppl. A), 175–190.

44. Eberhards, G. and Saltupe, B. Coastal processes monitoring in Latvia – experiment and practice. Folia Geographica VII. Geographical Society of Latvia, 1999, 1–10.

45. Hooke, J. M. Magnitude and distribution of rates of river bank. J. Hydrol., 1979, 42, 39–62.

46. Hudson, H. R. A field technique to directly measure river bank erosion. Canadian J. Earth Sci., 1982, 19, 381–383.

47. Räämet, A., Soomere, T. and Zaitseva-Pärnaste, I. Variations in extreme wave heights and wave directions in the north-eastern Baltic Sea. Proc. Estonian Acad. Sci., 2010, 59, 182–192.

48. Kamphuis, J. W. Introduction to Coastal Engineering and Management. World Scientific, Singapore, New Jersey, 2000.

49. Jaagus, J. Long-term changes in frequencies of wind directions on the western coast of Estonia. Publications, Institute of Ecology at Tallinn University, 2009, 11, 11–24.

Back to Issue