eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering
Short-time chirp excitation for wideband identification of dynamic objects; pp. 169–179
PDF | doi: 10.3176/eng.2011.2.07

Toivo Paavle
In this paper, some aspects of choosing excitation signals for fast measurement of complex electrical impedance of objects, including impedance of biological tissues, over a wide range of frequencies are discussed. For this purpose, several short-time excitation signals as special cases of chirp signals of near to minimal duration are proposed. The results of analysis and simulation are promising for implementing such kind of signals as the stimulating ones for fast estimation of bioimpedance parameters.

  1. Müller, S. and Massarani, P. Transfer-function measurement with sweeps. J. Audio Eng. Soc., 2001, 49, 443–471.

  2. Misaridis, T. X. and Jensen, J. A. Use of modulated excitation signals in medical ultrasound. Part I: Basic concepts and expected benefits. IEEE Trans. Ultrasonics, Ferroelectrics Frequency Control, 2005, 52, 177–191.

  3. Doerry, A. W. Generating Nonlinear FM ChirpWaveforms for Radar. Sandia Report, 2006, Sandia National Laboratories, Albuquerque, New Mexico.

  4. Nahvi, M. and Hoyle, B. S. Electrical impedance spectroscopy sensing for industrial processes. IEEE Sensors J., 2009, 9, 1808–1816.

  5. Min, M., Pliquett, U., Nacke, T., Barthel, A., Annus, P. and Land, R. Broadband excitation for short-time impedance spectroscopy. Physiol. Measur., 2008, 29, 185–192.

  6. Shen, H., Zhang, W., An, X. and Kwak, K. S. DS-PAM UWB system using non-linear chirp waveform. ETRI J., 2007, 29, 322–328.

  7. Pollakowski, M. and Ermert, H. Chirp signal matching and signal power optimization in pulse-echo mode ultrasonic nondestructive testing. IEEE Trans. Ultrasonics, Ferroelectrics Frequency Control, 1994, 41, 655–659.

  8. Grimnes, S. and Martinsen, Ø. G. Bioimpedance and Bioelectricity Basics. Elsevier Academic Press, 2008.

  9. Nebuya, S., Brown, B. H., Smallwood, R. H., Milnes, P., Waterworth, A. R. and Noshiro, M. Measurement of high frequency electrical transfer impedances from biological tissues. Electron. Lett. Online, 1999, 35, 1985–1987.

10. Min, M., Parve, T., Ronk, A., Annus, P. and Paavle, T. Synchronous sampling and demodula­tion in an instrument for multifrequency bioimpedance measurement. IEEE Trans. Instr. Meas., 2007, 55, 1365–1372.

11. Parve, T. and Land, R. Improvement of lock-in signal processing for applications in measure­ment of electrical bioimpedance. Proc. Estonian Acad. Sci. Eng., 2004, 10, 185–197.

12. Min, M., Land, R., Paavle, T., Parve, T. and Annus, P. Broadband spectroscopy of a dynamic impedance. IOP J. of Physics: Conference Series, 2010, 224, 1–4.

13. Paavle, T., Min, M., Ojarand, J. and Parve, T. Short-time chirp excitations for using in wide­band characterization of objects: an overview. In Proc. 12th Biennial Baltic Electronics Conference BEC2010. Tallinn, IEEE Operations Center, 2010, 253–256.

14. Vaseghi, S. V. Advanced Digital Signal Processing and Noise Reduction. John Wiley, Chichester, England, 2006.

15. Paavle, T., Min, M., Annus, P., Birjukov, A., Land, R. and Parve, T. Wideband object identifica­tion with rectangular wave chirp excitation. In Proc. European Conference on Circuit Theory and Design ECCTD09. Antalya, Turkey, 2009, 421–424.

16. Heinzel, G., Rüdiger, A. and Schilling, R. Spectrum and Spectral Density Estimation by the Discrete Fourier Transform (DFT), Including a Comprehensive List of Window Functions and Some New at-top Windows. Max-Planck-Institut für Gravitationsphysik, Hannover, 2002.
Back to Issue

Back issues