eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering

Ortophoto analysis for UGV long-range autonomous navigation; pp. 17–27

Full article in PDF format | doi: 10.3176/eng.2011.1.03

Robert Hudjakov, Mart Tamre

The paper presents a method of terrain classification and path planning for unmanned ground vehicles. The terrain classification is done on imagery that is acquired from UAV (unmanned aerial vehicle) or satellite and is used for UGV (unmanned ground vehicle) path planning thus introducing collaboration capabilities to the system of two. The system complements the UGV on-board navigation system by increasing its perception distance and providing long-range path planning capability.

  1. Sermanet, P., Hadsell, R., Scoffier, M., Muller, U. and LeCun, Y. Mapping and planning under uncertainty in mobile robots with long-range perception. In Proc. International Conference on Robotics and Automation, IEEE. Nice, 2008, 2525–2530.

  2. Silver, D., Sofman, B., Vandapel, N., Bagnell, J. A. and Stentz, A. Experimental analysis of overhead data processing to support long range navigation. In Proc. International Conference on Intelligent Robots and Systems, IEEE. Beijing, 2006, 2443–2450.

  3. Sermanet, P., Hadsell, R., Scoffier, M., Grimes, M., Ben, J., Erkan, A., Crudele, C., Miller, U. and LeCun, Y. A multirange architecture for collision-free off-road robot navigation. J. Field Robotics, 2009, 26, 52–87.

  4. Hadsell, R., Erkan, A., Sermanet, P., Ben, J., Kavukcuoglu, K., Muller, U. and LeCun, Y. A multi-range vision strategy for autonomous offroad navigation. In Proc. 13th IASTED International Conference on Robotics and Applications. ACTA Press, Anaheim, 2007, 457–463.

  5. Leomar, P., Tamre, M. and Vaher, T. Estonia making steps towards joining international UAV community. In Proc. Conference EURO UAV. Paris, 2004, 11–22.

  6. Universal Ground Vehicle, Research Project L523. Tallinn University of Technology, Depart­ment of Mechatronics, 2005–2008.

  7. Hiiemaa, M. and Tamre, M. Semi-autonomous motion control layer for UGV-type robot. In Recent Advances in Mechatronics (Brezina, T. and Jablonski, R., eds). Springer, Berlin, 2009, 203–207.

  8. Hudjakov, R. and Tamre, M. Aerial imagery terrain classification for long-range autonomous navigation. In Proc. International Symposium on Optomechatronics, IEEE. Istanbul, 2008, 88–91.

  9. Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, 2006.

10. Simard, P. Y., Steinkraus, D. and Platt, J. C. Best practices for convolutional neural networks applied to visual document analysis. In Proc. Seventh International Conference on Document Analysis and Recognition. Edinburgh, 2003, vol. 2, 958.

11. LeCun, Y., Bottou, L., Orr, G. and Müller, K. Efficient BackProp in Neural Networks: Tricks of the Trade (Orr, G. and Müller, K., eds.). Lecture Notes in Computer Science, 1524. Springer, Berlin, 1998, 546.

12. Hart, P. E., Nilsson, N. J. and Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Systems Sci. Cybernetics SSC4, 1968, 4, 100–107.
Back to Issue