ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Engineering

Modelling and experimental verification of mechanical properties of cotton knitted fabric composites; pp. 39–50

Full article in PDF format | doi: 10.3176/eng.2011.1.05

Authors
Olga Kononova, Andrejs Krasnikovs, Karlis Dzelzitis, Galina Kharkova, Angelina Vagel, Maris Eiduks

Abstract
This paper presents analytical and experimental procedures for estimating elastic properties of a plain weft-knitted fabric and of polymer composite materials reinforced by it. Cotton yarn and fabrics are being considered as an environmentally friendly alternative to synthetic reinforcement in polymer composites. In the present investigation, cotton yarn of different length and cotton knitted fabric specimens of different knitting directions were tested by tension in order to obtain the stress–strain response. Elastic moduli of the cotton yarn and knitted fabrics, having different load span and knitting directions, were obtained. Cotton knitted fabric composites with thermoset polymer matrices were manufactured and tested for stiffness and strength. Based on the Leaf and Glaskin model, a numerical (FEM) elastic properties averaging model was elaborated. Calculated elastic properties of composite materials have shown high compatibility with experimentally obtained values.
References

  1. Zhong, T. and Hu, H. Formability of weft-knitted fabrics on hemisphere. AUTEX Res. J., 2007, 8, 245–251.

  2. Gommers, B., Verpoest, I. and Van Houtte, P. Modelling the elasticproperties of knitted-fabric-reinforced composites. Composites Sci. Technol., 1996, 56, 685–694.
doi:10.1016/0266-3538(96)00053-X

  3. Ramakrishna, S.and Hull, D. Energy absorption capability of epoxy composite tubes with knitted carbon fibre fabric reinforcement. Composites Sci. Technol., 1993, 49, 349–356.
doi:10.1016/0266-3538(93)90066-P

  4 Ramakrishna, S. Characterization and modeling of the tensile properties of plain weft-knit fabric-reinforced composites. Composites Sci. Technol., 1997, 57, 1–22.
doi:10.1016/S0266-3538(96)00098-X

  5. Zhangyu, F. Z., Yanmo, C. and Hairu, L. Effects of pre-stretching on the tensile properties of knitted glass fiber fabric reinforced polypropylene composite. J. Thermoplastic CompositeMater., 2006, 19, 399–411.
doi:10.1177/0892705706059744

  6. De Araújo, M., Fangueiro, R. and Hong, H. Modeling and simulation of the mechanical behavior of welf-knitted fabrics for technical applications. Part 3. AUTEX Res. J., 2004, 4, 25–32.

  7. Shi, Y. and Jiang, Y. Realistic rendering of knitwear. J. Information Computing Science, 2007, 2, 153–160.

  8. Peirce, F. T. Geometrical principles applicable to the design of functional fabrics. J. Text. Inst., 1947, 17, 123.

  9. Dalidovitch, A. S. Basics of the Knitting Theory. Goslegprom, Moscow, 1949 (in Russian).

10. Leaf, G. A. and Glaskin, A. The geometry of plain knitted loop. J. Textile Inst., 1955, 25, 587.

11. Meißner, M. and Eberhardt, B. The art of knitted fabrics, realistic & physically based modeling of knitted patterns. Computer Graphics Forum, 1998, 17, 355–362.
doi:10.1111/1467-8659.00282

12. Kawabata, S. Nonlinear mechanics of woven and knitted materials. In Textile Structural Composites (Chou, T. W. and Ko, F. K., eds). Elsevier, 1989.

13. Savci, S., Curiskis, J. I. and Pailthorpe, M. T. A study of the deformation of weft-knit preforms for advanced composite structures, Part II: The resultant composite. Composites Sci. Technol., 2000, 60, 1943–1951.
doi:10.1016/S0266-3538(00)00078-6

14. Kelay, M. S., Bader, D. L. and Reed, P. E. Mechanical deformation mechanisms in knitted fabric composites. J. Thermoplastic Composite Mater., 1997, 10, 7684.

15. Kregers, A. F. and Teters, G. A. Structural model of deformation of anisotropic three-dimensionally reinforced composite.Mech. Composite Mater., 1982, 18, 10–17.
doi:10.1007/BF00605085

16. Hamada, H., Ramakrishna, S. and Huang, Z. Knitted fabric composites. In 3-D Textile Reinforcements in Composite Materials (Miravete, A., ed.). Woodhead Publ., 2000, 180–216.

17. Saville, B. P. Physical Testing of Textiles. CRT Press LLC, USA, 2000.

18. de Carvalho, L. H., Cavalcante, J. M. F. and d’Almeida, J. R. M. Comparison of the mechanical behavior of plain weave and plain weft knit jute fabric-polyester-reinforced composites. Polymer-Plastics Technol. Eng., 2006, 45, 791–797.
doi:10.1080/03602550600611933

19. de Araujo, M., Fangueiro, R. and Hong, H. Modelling and simulation of the mechanical behaviour of weft-knitted fabrics for technical applications. AUTEX Res. J., 2003, 3, 166–172.

20. Gordon, S. and Hsieh, Y.-L. (eds). Cotton: Science and Technology. Woodhead Publ., USA, 2007.

21. Verpoest, I. and Lomov, S. V. Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis. Composites Sci. Technol., 2005, 65, 2563–2574.
doi:10.1016/j.compscitech.2005.05.031

22. Ramakrishna, S., Huang, Z. M., Teoh, S. H., Tay, A. A. O. and Chew, C. L. Application of the model of Leaf and Glaskin to estimating the 3D elastic properties of knitted-fabric-reinforced composites. J. Textile Inst., 2000, 91, 132–150.
doi:10.1080/00405000008659494

23. Andersons, A., Joffe, R. and Spārniņš, E. Stiffness and strength of flax fiber/polymer matrix composites. Polymer Composites, 2007, 27, 221–229.
doi:10.1002/pc.20184
Back to Issue