eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering
Optimal adhesion measuring methods of the glass fibre reinforcement layer; pp. 297–306
PDF | doi: 10.3176/eng.2010.4.05

Meelis Pohlak, Kristo Karjust, Jüri Majak
The objective of the current study is to analyse the adhesion processes between the glass fibre reinforcement layer and acrylic sheet to find out the optimal adhesion measuring methods depending on the reinforcement layer concentrations and plastic composite material parameters (dimensions, wall angles, edge radiuses). The experimental tests with different glass fibre reinforce­ment composition, material heating temperatures and adhesion area variations have been considered. For finding out the optimal adhesion measuring method different well known methods have been tested. For optimal selection of the adhesion area an optimization model have been proposed. Together with the adhesion area optimization an attempt has been made to find out the maximum tensile force, depending on the conditions and material parameters. The FEM simulation has been performed with optimal adhesion area values to verify the prediction accuracy of the surrogate model.

  1. Tang, D. and Qian, X. Product lifecycle management for automotive development focusing on supplier integration. Computers in Industry, 2008, 59, 288–295.

  2. Gu, X. and Renaud, J. E. Decision based collaborative optimization. In Proc. 8th ASCE Speciality Conference on Probabilistic Mechanics and Structural Reliability. Indiana, 2000.

  3. Küttner, R. A Framework of collaborative product and production development system. In Proc. 3rd International Conference “Industrial Engineering – New Challenges to SME”. Tallinn, 2002, 34–37.

  4. Strong, A. B. Plastics Materials and Processing, 2nd ed. Prentice Hall, New Jersey, 2000.

  5. Lokensgard, E. and Richardson, T. L. Industrial Plastics: Theory and Applications. Delmar Learning, 2003.

  6. Sala, G., Landro, L. and Cassago, D. A numerical and experimental approach to optimise sheet stamping technologies: polymers thermoforming. J. Mater. Design, 2002, 23, 21–39.

  7. Küttner, R. and Karjust, K. Coordination of complex tasks of engineering product and manufacturing process optimization. Proc. Estonian Acad. Sci. Eng., 2006, 12, 163–175.

  8. Cho, C., Kwahk, S.-Y., Kim, W.-J. and Choi, J.-K. Thermo-viscoelastic-plastic deformation of huge products in thermal process. J. Achievements Materials Manufact. Eng., 2006, 17, 233–236.

  9. Küttner, R., Karjust, K. and Pohlak, M. The design and production technology of large composite plastic products. Proc. Estonian Acad. Sci. Eng., 2007, 13,117–128.

10. Pohlak, M., Majak, J., Karjust, K. and Küttner, R. Multicriteria optimization of large composite parts. Composite Structures, 2010, 92, 2146–2152.

11. Wrobel, G. and Pawlak, S. Ultrasonic evaluation of the fibre content in glass/epoxy composites. J. Achievements Materials Manufact. Eng., 2006, 18, 187–190.

12. Fereshteh-Saniee, F., Majzoobi, G. H. and Bahrami, M. An experimental study on the behavior of glass–epoxy composite at low strain rates. J. Mater. Proc. Technol., 2005, 162–163, 39–45.

13. Lacombe, R. Adhesion Measurement Methods. Theory and Practice. Taylor and Francis, 2006.

14. Plonka, R., Mäder, E., Gao, S. L., Bellmann, C., Dutschk, V. and Zhandarov, S. Adhesion of epoxy/glass fibre composites influenced by aging effects on sizings. Composites, Part A: Applied Science and Manufacturing, 2004, 35, 1207–1216.

15. Vas, L. M., Ronkay, F. and Czigány, T. Active fiber length distribution and its application to determine the critical fiber length. Polymer Testing, 2009, 28, 752–759.

16. Kusano, Y., Teodoru, S., Leipold, F., Andersen, T. L., Sørensen, B. F., Rozlosnik, N. and Michel­sen, P. K Gliding arc discharge – application for adhesion improvement of fibre reinforced polyester composites. Surface Coatings Technol., 2008, 202, 5579–5582.
Back to Issue

Back issues