ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Engineering

Implementation of robot welding cells using modular approach; pp. 317–327

Full article in PDF format | doi: 10.3176/eng.2010.4.07

Authors
Martinš Sarkans, Lembit Roosimölder

Abstract
During recent years the automation of production processes in small and medium enterprises (SME-s) has been a subject of growing interest. The economy of scale and increased volume of production can be achieved by selecting the right strategy for the automation. The automation systems are as a rule complex and their implementation is resource consuming for SME-s. In the present paper we study implementation of robot welding cells in several enterprises. It is shown that introducing robot welding cells in SME-s is a difficult task because of the limited resources and lack of the needed competence in SME-s. For successful realization of automation projects the complex systems must be divided into smaller and simpler parts using modular approach. The success of the project can be achieved through suitable definition of the modules. This makes it possible to implement the project steps in parallel by involving the needed resources.
References

  1. Litzenberger, G. Executive summary of World Robotics, 2009; www.worldrobotics.org, 01.03.2010.

  2. Gonzalez-Galvan, E. J., Loredo-Flores, A., Cervantes-Sanchez, J. J., Aguilera-Cortes, L. A. and Skaar, S. B. An optimal path-generation algorithm for manufacturing of arbitrarily curved surfaces using calibrated vision. Robotics Computer-Integr. Manufact., 2008, 24, 77–91.

  3. Dolinsky, J. U., Jenkinson, I. D. and Colquhoun, G. J. Application of genetic programming to the calibration of industrial robots. Computers in Industry, 2007, 58, 255–264.
doi:10.1016/j.compind.2006.06.003

  4. Kim, I., Son, J. and Yarlagadda, P. A study on the quality improvement of robotic GMA welding process. Robotics Computer-Integr. Manufact., 2003, 19, 567–572.

  5. Zachaaria, P. T. and Aspragathos, N. A. Optimal robot task scheduling based on genetic algorithms. Robotics Computer-Integr. Manufact., 2005, 21, 67–79.

  6. Bhangale, P. P., Agrawal, V. P and Saha, S. K. Attribute based specification, comparison and selection of a robot. Mechanism Machine Theory, 2004, 39, 1345–1366.
doi:10.1016/j.mechmachtheory.2004.05.020

  7. Ben-Horin, P. and Shoham, M. Singularity analysis of a class of parallel robots based on Grassmann–Cayley algebra. Mechanism Machine Theory, 2006, 41, 958–970.
doi:10.1016/j.mechmachtheory.2006.03.008

  8. Gultekin, H., Karasan, O. E. and Akturk, M. S. Pure cycles in flexible robotic cells. Computers Operat. Res., 2009, 36, 329–343.
doi:10.1016/j.cor.2007.10.007

  9. Bruccoleri, M. Reconfigurable control of robotized manufacturing cells. Robotics Computer-Integr. Manufact., 2007, 23, 94–106.

10. European 6th Framework called “SMErobot™”, www.smerobot.org, 01.02.2010.

11. INCOSE Systems Engineering Handbook, http://www.incose.org, 01.03.2010.

12. Baldwin, C. Y. and Clark, K. B. Design Rules, vol. 1, The Power of Modularity. MIT Press, Cambridge, Massachusetts, 2000.

13. Ericsson, A. and Erixon, G. Controlling Design Variants: Modular Product Platforms. ASME Press, New York, 1999.

14. Sterling, L. S. and Taveter, K. The Art of Agent-oriented Modelling. MIT Press, 2009.
Back to Issue