eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering

Temporal scales for transport patterns in the Gulf of Finland; pp. 211–227

Full article in PDF format | doi: 10.3176/eng.2010.3.02

Bert Viikmäe, Tarmo Soomere, Mikk Viidebaum, Mihhail Berezovski

The basic time scales for current-induced net transport of surface water and associated time scales of reaching the nearshore in the Gulf of Finland, the Baltic Sea, are analysed based on Lagrangian trajectories of water particles reconstructed from three-dimensional velocity fields by the Rossby Centre circulation model for 1987–1991. The number of particles reaching the nearshore exhibits substantial temporal variability whereas the rate of leaving the gulf is almost steady. It is recommended to use an about 3 grid cells wide nearshore area as a substitute to the coastal zone and about 10–15 day long trajectories for calculations of the probability of reaching the nearshore. An appropriate time window for estimates of the properties of net transport patterns is 4–10 days.

  1. HELCOM. Ensuring Safe Shipping in the Baltic (Stankiewicz, M. and Vlasov, N., eds.). Helsinki Commission, Helsinki, 2009.

  2. Kachel, M. J. Particularly Sensitive Sea Areas. Hamburg Studies on Maritime Affairs, vol. 13. Springer, 2008.

  3. Particularly Sensitive Sea Areas. International Maritime Organisation, 2007, London.

  4. Soomere, T., Myrberg, K., Leppäranta, M. and Nekrasov, A. The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997–2007. Oceanologia, 2008, 50, 287–362.

  5. Parnell, K. E., Delpeche, N., Didenkulova, I., Dolphin, T., Erm, A., Kask, A., Kelpšaite, L., Kurennoy, D., Quak, E., Räämet, A. et al. Far-field vessel wakes in Tallinn Bay. Estonian J. Eng., 2008, 14, 273–302.

  6. [ASCE] American Society of Civil Engineers. State-of-the-art review of modeling transport and fate of oil spills. ASCE Committee on Modeling Oil Spills, Water Resources Engineering Division. J. Hydraul. Eng., 1996, 122, 594–609.

  7. Reed, M., Johansen, O., Brandvik, P. J., Daling, P., Lewis, A., Fiocco, R., Mackay, D. and Prentki, R. Oil spill modeling towards the close of the 20th century: overview of the state of the art. Spill Sci. Technol. Bull., 1999, 5, 3–16.

  8. Vandenbulcke, L., Beckers, J.-M., Lenartz, F., Barth, A., Poulain, P.-M., Aidonidis, M., Meyrat, J., Ardhuin, F., Tonani, M., Fratianni, C., Torrisi, L. et al. Super-ensemble techniques: application to surface drift prediction. Progr. Oceanogr., 2009, 82, 149–167.

  9. Gästgifvars, M., Lauri, H., Sarkanen, A.-K., Myrberg, K., Andrejev, O. and Ambjörn, C. Modelling surface drifting of buoys during a rapidly-moving weather front in the Gulf of Finland, Baltic Sea. Estuar. Coast. Shelf Sci., 2006, 70, 567–576.

10. Alenius, P., Myrberg, K. and Nekrasov, A. Physical oceanography of the Gulf of Finland: a review. Boreal Env. Res., 1998, 3, 97–125.

11. Andrejev, O., Myrberg, K., Alenius, P. and Lundberg, P. A. Mean circulation and water exchange in the Gulf of Finland – a study based on three-dimensional modelling. Boreal Env. Res., 2004, 9, 1–16.

12. Osinski, R. and Piechura, J. Latest findings about circulation of upper layer in the Baltic Proper. In BSSC 2009 Abstract Book, August 17–21, 2009. Tallinn, 103.

13. Soomere, T., Viikmäe, B., Delpeche, N.and Myrberg, K. Towards identification of areas of reduced risk in the Gulf of Finland. Proc. Estonian Acad. Sci., 2010, 59, 156–165.

14. Soomere, T. and Quak, E. On the potential of reducing coastal pollution by a proper choice of the fairway. J. Coast. Res., 2007, SI 50, 678–682.

15. Andrejev, O., Sokolov, A., Soomere, T., Värv, R. and Viikmäe, B. The use of high-resolution bathymetry for circulation modelling in the Gulf of Finland. Estonian J. Eng., 2010, 16, 187–210.

16. Andrejev, O., Myrberg, K. and Lundberg, P. A. Age and renewal time of water masses in a semi-enclosed basin – application to the Gulf of Finland. Tellus B, 2004, 56A, 548–558.

17. Meier, H. E. M., Döscher, R. and Faxén, T. A multiprocessor coupled ice-ocean model for the Baltic Sea: application to salt inflow. J. Geophys. Res., 2003, 108(C8), Art. No. 3273.

18. Höglund, A., Meier, H. E. M., Broman, B. and Kriezi, E. Validation and Correction of Regionalised ERA-40 Wind Fields over the Baltic Sea Using the Rossby Centre Atmosphere Model RCA3.0. Rapport Oceanografi No. 97, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden, 2009.

19. Meier, H. E. M. On the parameterization of mixing in three-dimensional Baltic Sea models. J. Geophys. Res., 2001, 106, C30997–C31016.

20. Meier, H. E. M. Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar. Coast. Shelf Sci., 2007, 74, 717–734.

21. Alenius, P., Nekrasov, A. and Myrberg, K. The baroclinic Rossby-radius in the Gulf of Finland. Cont. Shelf Res., 2003, 23, 563–573.

22. Döös, K. Inter-ocean exchange of water masses. J. Geophys. Res., 1995, 100, C13499–C13514.

23. de Vries, P. and Döös, K. Calculating Lagrangian trajectories using time-dependent velocity fields. J. Atmos. Oceanic Technol., 2001, 18, 1092–1101.

24. Broman, B., Hammarklint, T., Rannat, K., Soomere, T. and Valdmann, A. Trends and extremes of wave fields in the north–eastern part of the Baltic Proper. Oceanologia, 2006, 48, 165–184.

25. Soomere, T. and Zaitseva, I. Estimates of wave climate in the northern Baltic Proper derived from visual wave observations at Vilsandi. Proc. Estonian Acad Sci. Eng., 2007, 13, 48–64.

26. Lehmann, A., Krauss, W. and Hinrichsen, H.-H. Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus, 2002, 54A, 299–316.

27. Soomere, T., Delpeche, N., Viikmäe, B., Quak, E., Meier, H. E. M. and Döös, K. Patterns of current-induced transport in the surface layer of the Gulf of Finland. Boreal Env. Res., 2011, 16. Forthcoming.
Back to Issue