eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering

On wave propagation in laminates with two substructures; pp. 228–242

Full article in PDF format | doi: 10.3176/eng.2010.3.03

Mihhail Berezovski, Arkadi Berezovski, Tarmo Soomere, Bert Viikmäe

We study numerically the influence of the presence of a complex internal structure of laminates, consisting of layers of different properties and variable thickness, on the dynamic response of the material. The influence of the internal structure of laminate layers on the signal propagation is demonstrated by several examples for periodic and double periodic laminates. It is also discovered that the influence of the mutual position of layers with different internal structure can be significant.

  1. Baganas, K. Wave propagation and profile reconstruction in inhomogeneous elastic media. Wave Motion, 2005, 42, 261–273.

  2. LaMattina, B. The US Army Research Office’s solid mechanics perspective. Composites, Part B. Engineering, 2009, 40, 416.

  3. Gilormini, P. and Bréchet, Y. Syntheses: Mechanical properties of heterogeneous media: Which material for which model? Which model for which material? Modelling Simul. Mater. Sci. Eng., 1999, 7, 805–816.

  4. Engelbrecht, J. Deformation waves in solids. In Applied Wave Mathematics – Selected Topics in Solids, Fluids and Mathematical Methods (Quak, E. and Soomere, T., eds.). Springer, 2009, 13–30.

  5. Berezovski, A., Berezovski, M. and Engelbrecht, J. Waves in inhomogeneous solids. In Applied Wave Mathematics – Selected Topics in Solids, Fluids and Mathematical Methods (Quak, E. and Soomere, T., eds.). Springer, 2009, 55–81.

  6. Berezovski, M., Berezovski, A. and Engelbrecht, J. Waves in materials with micro\-structure: numerical simulation. Proc. Estonian Acad. Sci., 2010, 59, 99–107.

  7. LeVeque, R. J. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, 2002.

  8. Berezovski, A., Engelbrecht, J. and Maugin, G. A. Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, Singapore, 2008.

  9. Achenbach, J. D. Wave Propagation in Elastic Solids. North-Holland, Amsterdam, 1973.

10. LeVeque, R. J. Wave propagation algorithms for multidimensional hyperbolic systems. J. Comp. Phys., 1997, 131, 327–353.

11. Fogarthy, T. and LeVeque, R. J. High-resolution finite-volume methods for acoustics in periodic and random media. J. Acoust. Soc. Am., 1999, 106, 261–297.

12. LeVeque, R. J. and Yong, D. H. Solitary waves in layered nonlinear media. SIAM J. Appl. Math., 2003, 63, 1539–1560.

13. Berezovski, A., Berezovski, M. and Engelbrecht, J. Numerical simulation of nonlinear elastic wave propagation in piecewise homogeneous media. Mater. Sci. Eng., 2006, A418, 364–369.

14. Berezovski, A., Engelbrecht, J. and Maugin, G. A. Thermoelastic wave propagation in inhomogeneous media. Arch. Appl. Mech., 2000, 70, 694–706.

15. Berezovski, A. and Maugin, G. A. Simulation of thermoelastic wave propagation by means of a composite wave-propagation algorithm. J. Comp. Phys., 2001, 168, 249–264.

16. Berezovski, A., Engelbrecht, J. and Maugin, G. A. Numerical simulation of two-dimensional wave propagation in functionally graded materials. Eur. J. Mech. A/Solids, 2003, 22, 257–265.
Back to Issue