eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering

LPE technology for power GaAs diode structures; pp. 11–22

Full article in PDF format | doi: 10.3176/eng.2010.1.04

Viktor Voitovich, Toomas Rang, Galina Rang

A liquid phase epitaxy technology for deposition of GaAs epilayers on the monocristallic GaAs substrates for high voltage ultra fast power p+-p-i-n-n+ GaAs structures has been developed. Proposed technological and hardware solutions of the LPE allow high efficiency of the growing process of diode structures with prescribed ratings and high structural quality of epitaxial layers. A method and technology for the fabrication of GaAs dies for the nanosecond range with reverse voltage up to 1200 V and current up to 100 A in diode chips is introduced. Reverse recovery times down to 20 ns were achieved and could be preserved up to + 260 °С.

  1. Baliga, B. J. Trends in power semiconductor devices. IEEE Trans. Electron Devices, 1996, 43, 1717–1731.

  2. Sugavara, Y. Recent progress in silicon carbide power device developments and application studies. In Proc. 18th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Cambridge, UK, 2003, 10–18.

  3. Rang, T. and Rang, G. Ränikarbiidil põhinevate jõupooljuhtseadiste disain ja karakterisee­ri­mine. Teadusmõte Eestis (IV), Tehnikateadused (II) (Küttner, R., ed.), Academia Scientiarum Estoniae, Tallinn, 2007, 121–131.

  4. Straubinger, T. L., Rasp, M., Schmitt, E. and Weber, A.-D. Quality aspects for the production of SiC bulk crystals. Mater. Sci. Forum, 2007, 556–557, 3–8.

  5. Chen, S., Afsar, M. and Sakdatorn, D. Dielectric-parameter measurements of SiC at millimeter and submillimeter wavelength. IEEE Trans. Instrumentation Measur., 2008, 57, 706–715.

  6. Rupp, R., Treu, M., Voss, S., Bjork, F. and Reiman, T. Second generation SiC Schottky diodes: a new benchmark in SiC device ruggedness. In Proc. International Symposium on Power Semiconductor Devices and ICs (ISPSD). Napoli, 2006, 269–273.

  7. Brezeanu, G. High performance power diodes on silicon carbide and diamond. Proc. Romanian Acad., A., 2007, 8, 107–115.

  8. Cochran, C. N. and Foster, L. M. Vapor pressure of gallium, stability of gallium suboxide vapor, and equilibria of some reactions producing gallium suboxide vapor. J. Electrochem. Soc., 1962, 109, 144–148.

  9. Cochran, C. N. and Foster, L. M. Reaction of gallium with the quartz and with water vapor, with implication in the synthesis of gallium arsenide. J. Electrochem. Soc., 1962, 109, 149–154.

10. Hicks, H. G. B. and Greene, P. D. Control of silicon contamination in solution growth of GaAs in silica. GaAs and related compounds. Inst. Phys. Confer. Ser., 1971, No. 9, 92–99.

11. Grabe, E. and Salow, H. The structure of GaAs layers grown by liquid phase epitaxy. Z. Angew. Phys., 1971, 32, 381–387.

12. Patent 1468314, USSR, Ashkinazhi, G. A. and Voitovich, V. Method of temperature annealing for epitaxial growth of GaAs alloys. USSR, Patent 1468314, 1988 (in Russian).

13. Ashkinazhi, G. A. and Voitovich, V. High temperature and high voltage GaAs power devices. Proc. Estonian Acad. Sci. Phys. Math., 1984, 33, 67–76 (in Russian).

14. Voitovich, V. Development of LPE technology for GaAs high-voltage structures. Doctoral thesis, TTU Press, 2006 (in Russian).

15. Voitovich, V., Rang, T., Rang, G. and Pikkov, M. High performance GaAs power diode. In Proc. 2008 International Biennial Baltic Electronics Conference (BEC2008). Tallinn, 2008, TTU Press, 111–114.
Back to Issue