ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Engineering

Photoplethysmographic signal processing using adaptive sum comb filter for pulse delay measurement; pp. 78–94

Full article in PDF format | doi: 10.3176/eng.2010.1.08

Authors
Kristjan Pilt, Kalju Meigas, Rain Ferenets, Jüri Kaik

Abstract
Pulse transit time, which correlates with blood pressure, is measured between the electrocardiogram R-wave peak and 50% raising front level of a photoplethysmographic (PPG) signal. Registered PPG signal bandwidth may be shared by noise and therefore the signal raising front is undetectable. Electrocardiogram reference adaptive sum comb filter was used to extract the harmonic components of the PPG signal and suppress the noises between them. Averaging effect of the filter on the PPG signal was studied and adjustments were made. The influence of the comb filtered PPG signal on the measurement of pulse transit time was analysed.
References

  1. Lass, J., Meigas, K., Karai, D., Kattai, R., Kaik, J. and Rosmann, M. Continuous blood pressure monitoring during exercise using pulse wave transit time measurement. In Proc. 26th Annual International Conference of the IEEE Eng. Med. Biol. Sci. San Francisco, 2004, 2239–2242.

  2. Lass, J., Meigas, K., Kattai, R., Karai, D., Kaik, J. and Rosmann, M. Optical and electrical methods for pulse wave transit time measurement and its correlation with arterial blood pressure. Proc. Estonian Acad. Sci. Eng., 2004, 10, 123–136.

  3. Asmar, R., Benetos, A., Topouchian, J., Laurent, P., Pannier, B., Brisac, A. M., Target, R. and Levy, B. I. Assessment of arterial distensibility by automatic pulse wave velocity measurement. Validation and clinical application studies. Hypertension, 1995, 26, 485–490.

  4. Naschitz, J. E., Bezobchuk, D., Mussafia-Priselac, R., Sundick, S., Dreyfuss, D., Khorshidi, I., Karidis, A., Manor, H., Nagar, M. et al. Pulse transit time by R-wave-gated infrared photo­plethysmography: Review of the literature and personal experience. J. Clin. Monit. Comput., 2005, 18, 333–342.
doi:10.1007/s10877-005-4300-z

  5. Kamal, A., Harness, J., Irving, G. and Mearns, A. Skin photoplethysmography – a review. Comput. Methods Progr. Biomed., 1989, 28, 257–269.
doi:10.1016/0169-2607(89)90159-4

  6. Pilt, K., Meigas, K., Lass, J., Rosmann, M. and Kaik, J. Analogue step-by-step DC component eliminator for 24-hour PPG signal monitoring. In Proc. IEEE Eng. Med. Biol. Soc. Conference.Lion, 2007, 1006–1009.

  7. Wood, L. B. and Asada, H. Low variance adaptive filter for cancelling motion artifact in wearable photoplethysmogram sensor signals. In Proc. IEEE Eng. Med. Biol. Soc. Conference, 2007, 652–655.

  8. Comtois, G., Mendelson, Y. and Ramuka, P. A comparative evaluation of adaptive noise cancellation algorithms for minimizing motion artifacts in a forehead mounted wearable pulse oximeter. In Proc. IEEE Eng. Med. Biol. Soc. Conference, 2007, 1528–1531.

  9. Cunningham, E. P. Digital Filtering: An Introduction. J. Wiley, New York, 1995.

10. Oppenheim, A. V., Schafer, R. W. and Buck, J. R. Discrete-time Signal Processing, 2nd Ed. Prentice Hall, 1999.

11. Pilt, K., Meigas, K., Ferenets, R. and Kaik, J. Adjustment of adaptive sum comb filter for PPG signals. In Proc. IEEE Eng. Med. Biol. Soc. Conference. Minneapolis, 2009, vol. 1, 5693–5696.

12. Pilt, K., Meigas, K., Karai, D. and Kaik, J. PPG signal processing for pulse delay computing by using adaptive comb filter. IFMBE Proc., 2009, 25, 1653–1656.
doi:10.1007/978-3-642-03882-2_438

13. Luster, E. A., Baumgartner, N., Adams, W. C. and Convertino, V. A. Effects of hypovolemia and posture on responses to the Valsalva maneuver. Aviat. Space Environ. Med., 1996, 67, 308–313.
Back to Issue