ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Engineering

Preparation and processing of doped AlN nanopowders; pp. 266–274

Full article in PDF format | doi: 10.3176/eng.2009.4.03

Authors
Janis Grabis, Ints Steins, Aloizijs Patmalnieks, Baiba Berzina, Laima Trinklere

Abstract
The aim of this work is improvement of sinterability of aluminium nitride by combining spark plasma sintering with using nanosized particulate composites prepared by simultaneous evaporation of Al and Y2O3, Gd2O3 and YF3 additives in radio-frequency nitrogen plasma. This approach allows to fabricate fully dense AlN materials at 1400 °C with holding time of 2 min despite the reduction of rare-earth compounds and formation of YN and GdN phases in the plasma flow. Besides AlN phase, the prepared materials contain secondary phases aluminium oxynitride, Y3Al5O12, GdAlO3 or a-Al2O3, depending on the used additive.
References

  1. Ponhieu, E., Grange, P., Delmon, B., Lonnoy, L., Leclercq, L., Bechara, R. and Grimblot, J. Proposal of a composition model for commercial AlN powder. J. Eur. Ceram. Soc., 1991, 8, 233–241.
doi:10.1016/0955-2219(91)90100-E

  2. Rixecker, G., Wiedmann, I., Rosinus, A. and Aldinger, F. High temperature effects in the fracture mechanical behaviour of silicon carbide liquid-phase sintered with AlN-Y2O3 additives. J. Eur. Ceram. Soc., 2001, 21, 1013–1019.
doi:10.1016/S0955-2219(00)00317-4

  3. Sigalus, J., Ras, A. H., Naodoo, K. and Herrmann, M. The use of hard and ultrahard ceramics in transportation and security application. In 2nd International Congress of ceramics. Global Roadmap for Ceramics (Bellosi, A. and Babini, G. N., eds.). ISTEC-CNR, Verona, 2008, 161–169.

  4. Berzina, B., Trinkler, L., Grabis, J. and Steins, I. Photoluminescence in AlN macro-size and nano-powder. Physica Status Solidi, 2007, 4, 959–962.
doi:10.1002/pssc.200673873

  5. Hundere, A. M. and Einarsrud, M. A. Microstructural development in AlN(YF3) ceramics. J. Eur. Ceram. Soc., 1997, 17, 3–12.
doi:10.1016/S0955-2219(96)00199-9

  6. Trocrynski, T. B. and Nicholson, P. S. Effect of additives on the pressureless sintering of aluminium nitride between 1500–1800 °C. J. Am. Ceram. Soc., 1989, 72, 1488–1491.
doi:10.1111/j.1151-2916.1989.tb07684.x

  7. Streicher, E., Chartier, Th., Boch, P., Denanot, M. and Rabier, I. Densification and thermal conductivity of low-sintering temperature AlN materials. J. Eur. Ceram. Soc., 1990, 6, 23–27.
doi:10.1016/0955-2219(90)90031-A

  8. Ayako Kai, Naoji Johkoh and Toshikatsu Miki. Spark plasma sintering of AlN ceramics and surface modification by refractory metal of Ti, Nb, Mo, Ta or W at low temperature. Jap. J. Appl. Phys., 2003, 42, 3540–3544.
doi:10.1143/JJAP.42.3540

  9. Grabis, J. Nanosized nitride based composite powders produced by ICP technique. Interface Controlled Materials, vol. 9 (Ruehle, M. and Glueter, M., eds.). Wiley-YCH Verlag, 2000, 267–272.

10. Graeve, O. A., Singh, H. and Clifton, A. Synthesis and consolidation of zirconia nanopowders via a unique reverse micelle synthesis process and plasma spark sintering. Ceram. Trans. Pulse Electric Current Synthesis and Processing of Materials. 2006, vol. 194. Wiley Interscience, 209–223.
Back to Issue