ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Engineering

Processing and microstructural characterization of WC-based cermets doped by ZrO2; pp. 275–282

Full article in PDF format | doi: 10.3176/eng.2009.4.04

Authors
Eduard Kimmari, Irina Hussainova, Anton Smirnov, Rainer Traksmaa, Irina Preis

Abstract
In the present work we report the processing of the WC-based and ZrO2-doped cermets with the addition of oxides of 6 wt% through sinter/HIP routine. Microstructural characterization of the final products has been conducted with the help of XRD-analysis and scanning electron micro­scopy combined with energy dispersive spectroscopy. Influence of the binder metal on the developed microstructure and possibility to sinter a fully dense bulk cermet with zirconia is discussed in detail.
References

  1. Gee, M. G., Grant, A. and Roebuck, B. Wear mechanisms in abrasion and erosion of WC/Co and related hardmetals. Wear, 2007, 263, 137–148.
doi:10.1016/j.wear.2006.12.046

  2. Hussainova, I. Microstructural design of ceramic-metal composites for tribological applications. Adv. Comp. Mater. Struct., 2007, 334–335, 125–128.

  3. Bakshi, S. D., Basu, B. and Mishra, S. K. Microstructure and mechanical properties of sinter-HIPed ZrO2-ZrB2 composites. Composites A, 2006, 37, 2128–2135.
doi:10.1016/j.compositesa.2005.11.012

  4. Basu, B., Venkateswaran, T. and Sarkar, D. Pressureless sintering and tribological properties of WC–ZrO2 composites. J. Eur. Ceram. Soc., 2005, 25, 1603–1610.
doi:10.1016/j.jeurceramsoc.2004.05.021

  5. Jiang, D., der Biest, O. and Vleugels, J. ZrO2-WC nanocomposites with superior properties. J. Eur. Ceram. Soc., 2007, 27, 1247–1251.
doi:10.1016/j.jeurceramsoc.2006.05.028

  6. Yang, F., Zhao, J. and Ai, X. Effect of initial particulate and sintering temperature on mechanical properties and microstructure of WC-ZrO2-VC ceramic composites. J. Mater. Proc. Tech., 2009, 209, 4531–4536.
doi:10.1016/j.jmatprotec.2008.10.027

  7. An, L., Han, J. and Chen, J. Microstructure and mechanical properties of WC-20%Co/ZrO2(3Y) cermet composites. J. University of Science and Technology Beijing, 2006, 13, 174–177.
doi:10.1016/S1005-8850(06)60038-8

  8. Bocanegra-Bernal, M. H. Hot isostatic pressing technology and its applications to metals and ceramics. J. Mater. Sci., 2004, 39, 6399–6420.
doi:10.1023/B:JMSC.0000044878.11441.90

  9. Nikolopoulos, P. and Sotiropoulou, D. Wettability between zirconia ceramics and the liquid metals copper, nickel and cobalt. J. Mater. Sci. Lett., 1987, 6, 1429–1430.
doi:10.1007/BF01689311

10. Munos, M. C., Gallego, S., Beltran, J. and Cerda, J. Adhesion at metal–ZrO2 interfaces. Surface Sci. Rep., 2006, 61, 303–344.
doi:10.1016/j.surfrep.2006.03.002

11. Zhu, J., Kamiya, A., Yamada, T., Shi, W., Naganuma, K. and Mukai, K. Surface tension, wettability and reactivity of molten titanium in Ti/yttria-stabilized zirconia system. Mater. Sci. Eng. A, 327, 117–127.
doi:10.1016/S0921-5093(01)01732-4

12. Li, Q., Lei, T. C. and Chen, W. Z. Microstructural characterization of WCp reinforced Ni-Cr-B-Si-C composite coatings. Surface Coatings Technol., 1999, 114, 285–291.
doi:10.1016/S0257-8972(99)00056-0

13. Wang, Y., Delanoe, A., Lay, S., Pauty, E. and Allibert, C. H. Morphology and growth of WC grains in WC-Co cermets. Materiaux, 2002, AF-01-082.
Back to Issue