eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering

Vessel-wave induced potential longshore sediment transport at Aegna Island, Tallinn Bay; pp. 168–181

Full article in PDF format | doi: 10.3176/eng.2009.3.02

Loreta Kelpšaitė, Tarmo Soomere


The potential impact of high-speed vessel wakes on the longshore drift of semi-sheltered, medium-energy beaches is evaluated based on recent studies in almost tideless Tallinn Bay, the Baltic Sea. Energy flux and wave propagation direction of vessel wakes is estimated based on high-resolution water surface profiling in summer 2008. The wind-wave time series in 1981–2008 is modelled on the basis of a simplified scheme for a long-term wave hindcast with the use of a triple-nested version of the WAM model. Longshore drift, created by wind waves and by vessel wakes, is estimated by the energy flux model, also known as the Coastal Engineering Research Centre (CERC) model. Vessel wakes cause longshore drift that in 2007–2008, as compared to the drift produced by wind waves on the SW coast of the Aegna Island at the entrance to Tallinn Bay, had a magnitude about 75% less and the opposite direction.


  1. Abadie, S., Butel, R., Mauriet, S., Morichon, D. and Dupuis, H. Wave climate and alongshore drift on the South Aquitaine coast. Cont. Shelf Res., 2006, 26, 1924–1939.

  2. Hofmann, H., Lorke, A. and Peeters, F. The relative importance of wind and ship waves in the littoral zone of a large lake. Limnol. Oceanogr., 2008, 53, 368–380.

  3. Bourne, J. Louisiana’s vanishing wetlands: going, going... . Science, 2000, 289, 1860–1863.

  4. Schoellhamer, D. H. Anthropogenic sediment resuspension mechanisms in a shallow microtidal estuary. Estuar. Coast. Shelf Sci., 1996, 43, 533–548.

  5. Parnell, K. E. and Kofoed-Hansen, H. Wakes from large high-speed ferries in confined coastal waters: management approaches with examples from New Zealand and Denmark. Coastal Manage., 2001, 29, 217–237.

  6. Soomere, T., Elken, J., Kask, J., Keevallik, S., Kõuts, T., Metsaveer, J. and Peterson, P. Fast ferries as a new key forcing factor in Tallinn Bay. Proc. Estonian Acad. Sci. Eng., 2003, 9, 220–242.

  7. Parnell, K. E., Delpeche, N., Didenkulova, I., Dolphin, T., Erm, A., Kask, A., Kelpšaite, L., Kurennoy, D., Quak, E., Räämet, A., Soomere, T., Terentjeva, A., Torsvik, T. and Zaitseva-Pärnaste, I. Far-field vessel wakes in Tallinn Bay. Estonian J. Eng., 2008, 14, 273–302.

  8. Soomere, T., Parnell, K. and Didenkulova, I. Implications of fast ferry wakes for semi-sheltered beaches, Aegna Island, Baltic Sea. J. Coastal Res., 2009, Special Issue 56, 128–132.

  9. Kask, J., Talpas, A., Kask, A. and Schwarzer, K. Geological setting of areas endangered by waves generated by fast ferries in Tallinn Bay. Proc. Estonian Acad. Sci. Eng., 2003, 9, 185–208.

10. Coastal Engineering Manual. Department of the Army. U.S. Army Corps of Engineers. Manual No. 1110-2-1100, 2002, CD.

11. Soomere, T., Kask, A., Kask, J. and Healy, T. Modelling of wave climate and sediment transport patterns at a tideless embayed beach, Pirita Beach, Estonia. J. Mar. Syst., 2008, 74, S133–S146.

12. Soomere, T., Myrberg, K., Leppäranta, K. and Nekrasov, A. The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997–2007. Oceanologia, 2008, 50, 287–362.

13. Erm, A. and Soomere, T. The impact of fast ferry traffic on underwater optics and sediment resuspension. Oceanologia, 2006, 48 (S), 283–301.

14. Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. and Jans­sen, P. A. E. M. Dynamics and Modelling of Ocean Waves. Cambridge University Press, 1994.

15. Soomere, T. Wind wave statistics in Tallinn Bay. Boreal Env. Res., 2005, 10, 103–118.

16. Climatological Ice Atlas for the Baltic Sea, Kattegat, Skagerrak and Lake Vänern (1963–1979). Swedish Meteorological and Hydrological Institute, Sweden, and Institute of Marine Research. Helsinki, Norrköping, 1982.

17. Kurennoy, D., Soomere, T. and Parnell, K. E. Variability of properties of wakes from high-speed ferries. J. Coastal Res., 2009, Special Issue 56, 519–523.

18. Torsvik, T., Didenkulova, I., Soomere, T. and Parnell, K. E. Variability in spatial patterns of long nonlinear waves from fast ferries in Tallinn Bay. Nonlin. Process. Geophys., 2009, 16, 351–363.

19. Kuhrts, C., Fennel, W. and Seifert, T. Model studies of transport of sedimentary material in the western Baltic. J. Mar. Res., 2004, 52, 167–190.

20. Mietus, M. (coordinator). The Climate of the Baltic Sea Basin. Marine meteorology and related oceanographic activities, Report No. 41, World Meteorological Organization, Geneva, 1998.

21. Soomere, T. and Keevallik, S. Directional and extreme wind properties in the Gulf of Finland. Proc. Estonian Acad. Sci. Eng., 2003, 9, 73–90.

22. Pilkey, O. H. and Pilkey-Jarvis, L. Useless Arithmetic: Why Environmental Scientists Can’t Predict the Future. Columbia University Press, 2006.

23. Kelpšaitė, L., Soomere, T. and Parnell, K. E. Energy pollution: the relative influence of wind-wave and vessel-wake energy in Tallinn Bay, the Baltic Sea. J. Coastal Res., 2009, Special Issue 56, 812–816.

24. Didenkulova, I., Parnell, K. E., Soomere, T. and Pelinovsky, E. Shoaling and runup of long waves induced by high-speed ferries in Tallinn Bay. J. Coastal Res., 2009, Special Issue 56, 491–495.

25. PIANC. Guidelines for Managing Wake Wash from High-speed Vessels. Report of the Working Group 41 of the Maritime Navigation Commission, International Navigation Association (PIANC), Brussels.

26. Stumbo, S., Fox, K., Dvorak, F. and Elliot, L. The prediction, measurement, and analysis of wake wash from marine vessels.Mar. Technol. SNAME News, 1999, 36, 248–260.
Back to Issue