ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Engineering

Some contributions to the design of osteosynthesis implants; pp. 121–130

Full article in PDF format | doi: 10.3176/eng.2009.2.05

Authors
Ciprian Radu, Ileana Roşca

Abstract
The main purpose of this paper is to develop a new adapted osteosynthesis implant, used for transsindesmotic fibula’s fracture. We have chosen to design this medical implant, because the lateral malleolar fracture represents from 40% to 45% of skeletal fractures. At the present moment, orthopaedic screws and metallic plates do the osteosynthesis of this region, but the results are not satisfactory. In order to reduce the healing time of the fractured bone, we have considered optimiz­ing the geometrical shape of the existing osteosynthesis metallic plate, thus to fulfil two major functionalities such as implant’s capacity to adapt to the bone surface and keeping the periosteum vascular circulation in the contact region. The proposed solution is based on a method, which combines the medical image processing techniques and CAD modelling.
References

  1. Radu, C. and Roşca, I. On the design of a medical implant used for the osteosynthesis of transsindesmotic fibular fracture, parts I, II. In Proc. 6th International DAAAM Baltic Conference, Industrial Engineering. Tallinn, 2008, 135–140, 141–146.

  2. Alexa, O. Usual surgical techniques used in ostheoarticular trauma. Gr. T. Popa Publisher, U.M.F. Iaşi, Romania, 2007, 11–13.

  3. Radu, C. Automatic reconstruction of 3D CAD models from tomographic slices via Rapid Prototyping technology. In Proc. 10th International Research/Expert Conference “Trends in the Development of Machinery and Associated Technology”. Barcelona, 2006, 474–477.

  4. www.materialise.com/materialise/view/en/92462-Why+choose+Mimics.html, 26.02.2008.

  5. Leondes, C. T. Medical Imaging Systems Technology. World Scientific Publisher, California, 2007, 43–49.

  6. Radu, C. and Rosca, I. C. Medical image processing and biomechanical analysis of fibula bones. ECCOMAS Thematic, Modelling of Heterogeneous Materials – MHM 2007 (Milan, J., Zdenek, B. and Herbert, M., eds.). Prague, 2007, 282–283.

  7. Olariu, V., Rosca, I., Baritz, M., Radu, G. and Barbu, D. Biomechanics. The Basis of Bio­mechanics. Macarie Publisher, Targoviste, Romania, 1998, 51–54.

  8. Stoia, D. I. and Toth-Taşcău, M. Multipart 3D reconstruction of a human cervical vertebra. In 9th WSEAS International Conference on Automation and Information, ICAI’08. Bucharest, Romania, 2008, 258–264.

  9. Garces, E. and Goswami, A. Computer modelling of the human tibia and bony pelvis. In Proc. CCEC Symposium. University of North Florida, Jacksonville, 2005, 844–846.

10. Ionescu, I., Conway, T., Schinning, A., Almutairi, M. and Nicholson, D. W. Solid modelling and static finite element analysis of human tibia. InProc. Summer Bioengineering Conference. Sonesta Beach Resort, Key Biscayne, Florida, 2003, 288–293.

11. Brown, T. D. Finite element modeling in musculoskeletal biomechanics. J. Appl. Biomech., 2004, 19, 336–366.


Back to Issue