eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering

Use of contour signatures and classification methods to optimize the tool life in metal machining; pp. 3–12

Full article in PDF format | doi: 10.3176/eng.2009.1.01

Enrique Alegre, Rocío Alaiz-Rodríguez, Joaquín Barreiro, Jonatan Ruiz

Tool replacement operations have a great influence over the cost of machined parts. At present, the common criteria used to determine the tool life do not optimize the use of tools and lead to significant economic losses. The main objective of this work is to define a new procedure to improve the decision about the time for tool replacement. The approach followed is based on digital images of the cutting edge that has already been explored in the literature. The novelty of the present work relies on the use of contour signatures of the wear region as the input to two techniques of classification, k-nearest neighbour and a neural network. The influence of the signature size vector is also analysed. A total of 1383 flank wear images were acquired and the error rate estimation was about 5%.

  1. Kurada, S. and Bradley, C. A review of machine vision sensors for tool condition monitoring. Computers in Industry, 1997, 34, 55–72.

  2. Teti, R. Machining of composite materials. Ann. CIRP, 2002, 51, 611–634.

  3. Weckenmann, A. and Nalbantic, K. Precision measurement of cutting tools with two matched optical 3d-sensors. Ann. CIRP, 2003, 52, 443–446.

  4. Kopac, J. and Sali, S. Tool wear monitoring during the turning process. J. Mater. Proc. Technol., 2001, 113, 312–316.

  5. Wang, W., Hong, G. and Wong, Y. Flank wear measurement by a threshold independent method with sub-pixel accuracy. Internat. J. Machine Tools Manufact., 2006, 46, 199–207.

  6. Lim, G. Tool-wear monitoring in machine turning. J. Mater. Proc. Technol., 1995, 51, 25–36.

  7. Jurkovic, J., Korosec, M. and Kopac, J. New approach in tool wear measuring technique using CCD vision system. Internat. J. Machine Tools Manufact., 2005, 45, 1023–1030.

  8. Kurada, S. and Bradley, C. A machine vision system for tool wear assessment. Tribology Internat., 1997, 30, 295–304.

  9. Sick, B. On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research. Mech. Syst. Signal Proc., 2002, 16, 487–546.

10. Wang, W., Wong, Y. and Hong, G. Flank wear measurement by successive image analysis. Computers in Industry, 2005, 56, 816–830.

11. Alegre, E., Barreiro, J., Cáceres, H., Hernández, L. K., Fernández, R. and Castejón, M. Design of a computer vision system to estimate tool wearing. Mater. Sci. Forum, 2006, 526, 61–66.

12. Lanzetta, M. A new flexible high-resolution vision sensor for tool condition monitoring. J. Mater. Proc. Technol., 2001, 119, 73–82.

13. Sortino, M. Application of statistical filtering for optical detection of tool wear. Internat. J. Machine Tools Manufact., 2003, 43, 493–497.

14. Castejón, M., Alegre, E., Barreiro, J. and Hernández, L. K. On-line tool wear monitoring using geometric descriptors from digital images. Internat. J. Machine Tools Manufact., 2007, 47, 1847–1853.

15. Ghosh, N., Ravix, Y. B., Patra, A., Mukhopadhyay, S., Paul, S., Mohanty, A. R. and Chattopadhyay, A. B. Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mech. Syst. Signal Proc., 2007, 21, 466–479.

16. Brezak, D., Udiljak, T., Majetic, D., Novakovic, B. and Kasac, J. Tool wear monitoring using radial basis function neural network. Neural Networks, 2004, 11, 1859–1862.

17. Littlefair, G., Javed, M. A. and Smith, G. T. Fusion of integrated multisensory data for tool wear monitoring. Neural Networks, 1995, 2, 734–737.

18. Sunil, V. T. and Shin, Y. C. Design and implementation of tool wear monitoring with radial basis function neural networks. In Proc. Am. Control Confer., Seattle, 1995, vol. 3, 1722–1726.

19. Barreiro, J., Castejón, M., Alegre, E. and Hernández, L. K. Use of descriptors based on moments from digital images for tool wear monitoring. Internat. J. Machine Tools Manufact., 2008, 48, 1005–1013.

20. Wang, G. B. and Wang, S. G. Parallel recursive computation of the inverse Legendre moment transforms for signal and image reconstruction. IEEE Signal Process. Lett., 2004, 11, 929–932.

Back to Issue