eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering
Far-field vessel wakes in Tallinn Bay; 273–302
PDF | doi: 10.3176/eng.2008.4.01

Kevin Parnell, Nicole Delpeche, Ira Didenkulova, Tony Dolphin, Ants Erm, Andres Kask, Loreta Kelpšaite, Dmitry Kurennoy, Ewald Quak, Andrus Räämet, Tarmo Soomere, Anna Terentjeva, Tomas Torsvik, Inga Zaitseva-Pärnaste
The properties of wave fields induced by high-speed ferries and recently introduced conventional ferries with increased cruise speeds are analysed for a site in Tallinn Bay, the Gulf of Finland, the Baltic Sea, located about 3 km from the sailing line and up to 8 km from the wave production area. The analysis is based on high-resolution profiling of the water surface for about 650 wakes from fast ferries, measured during 4 weeks in June–July 2008. The new large conventional ferries with cruise speeds of 25–30 knots (~ 45–55 km/h) sail at near-critical speeds along extensive sections of eastern Tallinn Bay, and excite wakes equivalent to those of high-speed ferries. The peak periods of these wakes are between 10 and 13 s. The typical daily highest ship wave is approximately 1.2 m, measured prior to wake breaking. The largest recorded ship wave in calm conditions had a height of 1.5 m and in the presence of some wind wave background 1.7 m. The cumulative impact of ship wakes results in a gradual increase in the suspended matter concentration in near-bottom water over the course of a day. The largest and longest ship waves produce considerable wave runup at the coast and prevent several coastal sections from achieving an equilibrium state. The largest ship waves have an asymmetric shape both in terms of the water surface elevation above and below the mean level and in terms of the shape of the wave front and back. The overall intensity of anthropogenic waves has remained at the same level as it was in the year 2002, although the ships that produced the highest waves in the past are no longer in service.

  1. Schoellhamer, D. H. Anthropogenic sediment resuspension mechanisms in a shallow microtidal estuary. Estuar. Coast. Shelf Sci.,1996, 43, 533–548.

  2. Bourne, J. Louisiana’s vanishing wetlands: going, going... . Science, 2000, 289, 1860–1863.

  3. Parnell, K. E. and Kofoed-Hansen, H. Wakes from large high-speed ferries in confined coastal waters: management approaches with examples from New Zealand and Denmark. Coastal Manage., 2001, 29, 217–237.

  4. Lindholm, T., Svartström, M., Spoof, L. and Meriluoto, J. Effects of ship traffic on archipelago waters off the Långnäs harbour in Åland, SW Finland.Hydrobiologia, 2001, 444,217–225.

  5. Erm, A. and Soomere, T. The impact of fast ferry traffic on underwater optics and sediment resuspension. Oceanologia, 2006, 48(S), 283–301.

  6. Osborne, P. D., MacDonald, N. J. and Parkinson, S. Sediment transport in response to wave groups generated by high-speed vessels. In Proc. International Conference “Coastal Sediments 07, ASCE, 2007, 110–123.

  7. Velegrakis, A. F., Vousdoukas, M. I., Vagenas, A. M., Karambas, Th., Dimou, K. and Zarka­das, Th. Field observations of waves generated by passing ships: a note. Coastal Eng., 2007, 54, 369–375.

  8. Wolter, C. and Arlinghaus, R. Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance. Rev. Fish Biology Fisheries, 2003, 13, 63–89.

  9. Boyd, I. (co-ordinator). The effects of anthropogenic sound on marine mammals – a draft research strategy. Marine Board, European Science Foundation, Position Paper 13, Marine Board – ESF, Ostend, Belgium, 2008, 92 pp.

10. Rönnberg, O. The effects of ferry traffic on rocky shore vegetation in the southern Åland archipelago. Merentutkimuslaitoksen Julk./ Havsforskningsinst. Skrift, 1975, 239, 325–330.

11. Rönnberg, O. Traffic effects on rocky-shore algae in the Archipelago Sea, SW Finland. Acta Acad. Aboensis Ser. B, 1981, 41, 1–86.

12. Rönnberg, O., Östman, T. and Ådjers, K. Fucus vesiculosus as an indicator of wash effects of ships’ traffic. Oebalia, 1991, 27, Suppl., 213–222.

13. Madekivi, O. (ed.). Alusten aiheuttamien aaltojen ja virtausten ympäristövaikutukset. Vesi ja Ympäristöhallinnon Julk. Sarja A, 1993, 166, 1–113.

14. Soomere, T. and Rannat, K. An experimental study of wind waves and ship wakes in Tallinn Bay. Proc. Estonian Acad. Sci. Eng., 2003, 9, 157–184.

15. Soomere, T., Elken, J., Kask, J., Keevallik, S., Kõuts, T., Metsaveer, J. and Peterson, P. Fast ferries as a new key forcing factor in Tallinn Bay. Proc. Estonian Acad. Sci. Eng., 2003, 9, 220–242.

16. Soomere, T. Fast ferry traffic as a qualitatively new forcing factor of environmental processes in non-tidal sea areas: a case study in Tallinn Bay, Baltic Sea. Environ. Fluid Mech., 2005,5, 293–323.

17. Parnell, K. E., McDonald, S. C. and Burke, A. E. Shoreline effects of vessel wakes, Marlborough Sounds, New Zealand. J. Coastal Res., 2007, SI 50, 502–506.

18. Hamer, M. Solitary killers. New Scientist, 1999, 163(2201), 18–19.

19. Soomere, T. Nonlinear ship wake waves as a model of rogue waves and a source of danger to the coastal environment: a review. Oceanologia, 2006, 48(S), 185–202.

20. Lindholm, T. Färjor ger fart åt alger. Vatten, 1977, 53, 133–136.

21. Fagerholm, H. P., Rönnberg, O., Östman, M. and Paavilainen, J. Remote sensing assessing artificial disturbance of the thermocline by ships in archipelagos of the Baltic Sea with a note on some biological consequences. In 11th Annual International Geoscience and Remote Sensing Symposium. Helsinki, 1991, vol. 2, 377–380.

22. Peterson, P., Soomere, T., Engelbrecht, J. and van Groesen, E. Soliton interaction as a possible model for extreme waves in shallow water. Nonlin. Process. Geophys., 2003, 10,503–510.

23. Croad, R. and Parnell, K. E. Proposed Controls on Shipping Activity in the Marlborough Sounds. A review under S. 32 of the Resource Management Act. Report to the Marlborough District Council. Opus International Consultants Limited and Auckland UniServices Ltd., Auckland, 2002.

24. PIANC. Guidelines for Managing Wake Wash from High-speed Vessels. Report of the Working Group 41 of the Maritime Navigation Commission, International Navigation Association (PIANC), Brussels, 2003, 32 pp.

25. Soomere, T. and Kask, J. A specific impact of waves of fast ferries on sediment transport processes of Tallinn Bay. Proc. Estonian Acad. Sci. Biol. Ecol., 2003, 52, 319–331.

26. Caliskan, H. and Valle-Levinson, A. Wind-wave transformations in an elongated bay. Cont. Shelf Res., 2008, 28, 1702–1710.

27. Soomere, T., Behrens, A., Tuomi, L. and Nielsen, J. W. Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun. Nat. Hazards Earth Syst. Sci., 2008, 8, 37–46.

28. Soomere, T. Wind wave statistics in Tallinn Bay. Boreal Env. Res., 2005, 10, 103–118.

29. Lutt, J. and Tammik, P. Bottom sediments of Tallinn Bay. Proc. Estonian Acad. Sci. Geol., 1992, 41, 81–87.

30. Kask, J., Talpas, A., Kask, A. and Schwarzer, K. Geological setting of areas endangered by waves generated by fast ferries in Tallinn Bay. Proc. Estonian Acad. Sci. Eng., 2003, 9, 185–208.

32. Soomere, T. Nonlinear components of ship wake waves. Appl. Mech. Rev., 2007, 60, 120–138.

33. Hüsig, A., Linke, T. and Zimmermann, C. Effects from supercritical ship operation on inland canals. J. Waterw. Port Coast. Ocean Eng., 2000, 126, 130–135.

34. Torsvik, T. and Soomere, T. Simulation of patterns of wakes from high-speed ferries in Tallinn Bay. Estonian J. Eng., 2008, 14, 232–254.

35. Heinsaar, A., Hunt, M., Kuusk, H.-E., Keevallik, S., Kõuts, T., Lutt, J., Mõtlik, L., Mäss, V., Oja, E., Raudsepp, U., Sepp, R., Sipelgas, L.,Soomere, T. and Väling, M. Eesti Lootsi­raamat. Veeteede Amet, Hüdrograafia ja navigatsioonimärgistuse teenistus, Tallinn, 2003.

36. Belibassakis, K. A. A coupled-mode technique for the transformation of ship-generated waves over variable bathymetry regions. Appl. Ocean Res., 2003, 25, 321–336.

37. Torsvik, T., Didenkulova, I., Soomere, T. and Parnell, K. Variability in spatial patterns and runup of long waves from fast ferries. Forthcoming.

38. Erm, A., Kask, A., Kõuts, T. and Soomere, T. Optical detection of wave-induced resuspension of sediments. In Baltic Sea Science Congress. Rostock, 2007. Abstracts, Part 1: Lectures, Rostock University, 2007, 96.

39. Didenkulova, I., Kurkin, A. and Pelinovsky, E. Run-up of solitary waves on slopes with different profiles. Izvestiya, Atmospheric and Oceanic Physics, 2007, 43, 384–390.

40. Didenkulova, I. and Pelinovsky, E. Run-up of long waves on a beach: the influence of the incident wave form. Okeanologiya, 2008, 48, 5–10.

41. Didenkulova, I., Pelinovsky, E., Soomere, T. and Zahibo, N. Runup of nonlinear asymmetric waves on a plane beach. In Tsunami & Nonlinear Waves (Anjan Kundu, ed.). Springer, Berlin, Heidelberg, New York, 2007, 175–190.

42. Didenkulova, I., Zahibo, N., Kurkin, A., Levin, B., Pelinovsky, E. and Soomere, T. Runup of nonlinearly deformed waves on a coast. Dokl. Earth Sci., 2006, 411, 1241–1243.

43. Erm, A. and Soomere, T.Influence of fast ship waves on the optical properties of sea water in Tallinn Bay, Baltic Sea. Proc. Estonian Acad. Sci. Biol. Ecol., 2004, 53, 161–178.

44. Massel, S. R. Hydrodynamics of Coastal Zones. Elsevier, Amsterdam, 1989.

45. Soomere, T., Põder, R., Rannat, K. and Kask, A. Profiles of waves from high-speed ferries in the coastal area. Proc. Estonian Acad. Sci. Eng., 2005, 11, 245–260.

46. Ertekin, R. C., Webster, W. C. and Wehausen, J. V. Waves caused by a moving disturbance in a shallow channel of finite width. J. Fluid Mech., 1986, 169, 275–292.

47. Broman, B., Hammarklint, T., Rannat, K., Soomere, T. and Valdmann, A. Trends and extremes of wave fields in the north–eastern part of the Baltic Proper.Oceanologia, 2006, 48(S), 165–184.

48. Soomere, T. and Zaitseva, I. Estimates of wave climate in the northern Baltic Proper derived from visual wave observations at Vilsandi. Proc. Estonian Acad. Sci. Eng., 2007, 13,

Back to Issue

Back issues