eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering

Simulation of patterns of wakes from high-speed ferries in Tallinn Bay; pp. 232–254

Full article in PDF format | doi: 10.3176/eng.2008.3.04

Tomas Torsvik, Tarmo Soomere


We analyse spatial patterns and far field properties of the long-wave part of wakes of fast ferries in Tallinn Bay with the use of the Boussinesq-type shallow-water model COULWAVE, forced by realistic ship motions. The calculated heights of ship waves exhibit substantial spatial variability. The largest waves were created when the ship, sailing to Tallinn, entered into super­critical regime when moving over the coastal slope. The maximum wave height eventually reached 3 m, whereas along other sections of the track the wave height was about 1 m. The highest waves hit the area of Pirita Beach that apparently has much larger ship wave loads than the adjacent sections of the Viimsi Peninsula.


  1. Bourne, J. Louisiana’s vanishing wetlands: Going, going... Science, 2000, 289, 1860–1863.

  2. Schoellhamer, D. H. Anthropogenic sediment resuspension mechanisms in a shallow microtidal estuary. Estuar. Coast. Shelf Sci., 1996, 43, 533–548.

  3. Lindholm, T., Svartström, M., Spoof, L. and Meriluoto, J. Effects of ship traffic on archipelago waters off the Långnäs harbour in Åland, SW Finland. Hydrobiologia, 2001, 444, 217–225.

  4. Soomere, T. Fast ferry traffic as a qualitatively new forcing factor of environmental processes in non-tidal sea areas: a case study in Tallinn Bay, Baltic Sea. Environ. Fluid Mech., 2005, 5, 293–323.

  5. Soomere, T. and Rannat, K. An experimental study of wind waves and ship wakes in Tallinn Bay. Proc. Estonian Acad. Sci. Eng., 2003, 9, 157–184.

  6. Soomere, T. Wind wave statistics in Tallinn Bay. Boreal Environ. Res., 2005, 10, 103–118.

  7. Soomere, T., Elken, J., Kask, J., Keevallik, S., Kõuts, T., Metsaveer, J. and Peterson, P. Fast ferries as a new key forcing factor in Tallinn Bay. Proc. Estonian Acad. Sci. Eng., 2003, 9, 220–242.

  8. Soomere, T., Põder, R., Rannat, K. and Kask, A. Profiles of waves from high-speed ferries in the coastal area. Proc. Estonian Acad. Sci. Eng., 2005, 11, 245–260.

  9. Soomere, T. Nonlinear components of ship wake waves. Appl. Mech. Rev., 2007, 60, 120–138.

10. Guidelines for Managing Wake Wash from High-speed Vessels. Report of the Working Group 41 of the Maritime Navigation Commission. International Navigation Association (PIANC), Brussels, 2003.

11. Parnell, K. E. and Kofoed-Hansen, H. Wakes from large high-speed ferries in confined coastal waters: Management approaches with examples from New Zealand and Denmark. Coast. Manage., 2001, 29, 217–237.

12. Sorensen, R. M. Ship-generated waves. Adv. Hydrosci., 1973, 9, 49–83.

13. Kirk McClure Morton. Investigation of High Speed Craft on Routes Near to Land or Enclosed Estuaries. Research Report JR226, Maritime and Coastguard Agency, UK, 1998.

14. Kofoed-Hansen, H. Technical Investigation of Wake Wash from Fast Ferries. Report No. 96-5012, Danish Hydraulic Institute, Copenhagen, 1996.

15. Kofoed-Hansen, H. and Mikkelsen, A. C. Wake wave from fast ferries in Denmark. In Proc. 4th International Conference of Fast Sea Transportation FAST’97. Sydney, 1997. Baird Publications, Hong Kong, Sydney, 1997, vol. 1, 471–478.

16. Lee, S. J. and Grimshaw, R. H. J. Upstream-advancing waves generated by threedimensional moving disturbances. Phys. Fluids A, 1990, 2, 194–201.

17. Jiang, T. Ship Waves in Shallow Water. Fortschritt-Berichte VDI, Reihe 12, No. 466, VDI Verlag, Düsseldorf, 2001.

18. Chen, X. N. and Sharma, S. D. A slender ship moving at a near-critical speed in a shallow channel. J. Fluid Mech., 1995, 291, 263–285.

19. Jiang, T. Investigation of waves generated by ships in shallow water. In Proc. 22nd Symposium on Naval Hydrodynamics. Washington D.C., 1998. National Academy Press, Washington D.C., 1999, 601–612.

20. Jiang, T., Henn, R. and Sharma, S. D. Wash waves generated by ships moving on fairways of varying topography. In Proc. 24th Symposium on Naval Hydrodynamics. Fukuoka, Japan, 2002. National Academy Press, Washington D.C., 2003, 441–457 (web only: www.nap-edu).

21. Kofoed-Hansen, H., Jensen, T., Sørensen, O. R. and Fuchs, J. Wake wash risk assessment of high-speed ferry routes – a case study and suggestions for model improvements. In Proc. International Conference on Hydrodynamics of High Speed Craft, Wake Wash and Motion Control. London, 2000. The Royal Institute of Naval Architects, 2000.

22. Katsis, C. and Akylas, T. R. On the excitation of long nonlinear water waves by a moving pressure distribution. Part 2. Three-dimensional effects. J. Fluid Mech., 1987, 177, 49–65.

23. Li, Y. and Sclavounos, P. D. Three-dimensional nonlinear solitary waves in shallow water generated by an advancing disturbance. J. Fluid Mech., 2002, 470, 383–410.

24. Choi, H. S., Bai, K. J., Kim, J. W., Kim, Y. H. and Cho, H. Nonlinear free surface waves due to a ship moving near the critical speed of shallow water. In Proc. 18th Symposium on Naval Hydrodynamics. Ann Arbor, 1990. National Academy Press, Washington D.C., 1990, 173–190.

25. Torsvik, T., Dysthe, K. and Pedersen, G. Influence of variable Froude number on waves generated by ships in shallow water. Phys. Fluids, 2006, 18, Paper 062101.

26. Belibassakis, K. A. A coupled-mode technique for the transformation of ship-generated waves over variable bathymetry regions. Appl. Ocean Res., 2003, 25, 321–336.

27. Soomere, T. and Kask, J. A specific impact of waves of fast ferries on sediment transport processes of Tallinn Bay. Proc. Estonian Acad. Sci. Biol. Ecol., 2003, 52, 319–331.

28. Erm, A. and Soomere, T. Influence of fast ship waves on optical properties of sea water in Tallinn Bay, Baltic Sea. Proc. Estonian Acad. Sci. Biol. Ecol., 2004, 53, 161–178.

29. Lynett, P. and Liu, P. L.-F. COULWAVE model page: Modeling wave generation, evolution, and interaction with depth-integrated, dispersive wave equations. plynett/COULWAVE/

30. Lynett, P. and Liu, P. L.-F. A numerical study of submarine landslide generated waves and runup. Proc. Roy. Soc. Lond. A, 2002, 458, 2885–2910.

31. Lynett, P., Wu, T.-R. and Liu, P. L.-F. Modeling wave runup with depth-integrated equations. Coast. Eng., 2002, 46, 89–107.

32. Redekopp, L. G. and You, Z. Passage through resonance for the forced Korteweg-de Vries equation. Phys. Rev. Lett., 1995, 74, 5158–5161.

33. Soomere, T., Kask, A., Kask, J. and Nerman, R. Transport and distribution of bottom sediments at Pirita Beach. Estonian J. Earth Sci., 2007, 56, 233–254.

34. Soomere, T., Kask, A. and Kask, J. Pirita rannavööndi keskkonnauuringud ja rannakaitse raja­tiste projekteerimise lähteülesanne. Research report. TTÜ Küberneetika Instituut, Tallinn, 2005.
Back to Issue