eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering

Validation of hydrostatic and non-hydrostatic versions of the hydrodynamical model MIKE 3 applied for the Baltic Sea; pp. 255–270

Full article in PDF format | doi: 10.3176/eng.2008.3.05

Jelena Passenko, Gennadi Lessin, Anders Christian Erichsen, Urmas Raudsepp

Hydrostatic and non-hydrostatic versions of the hydrodynamic model MIKE 3 were used to hindcast hydrophysical fields in the Baltic Sea for the period 1 April–1 November 1996. The model results were compared with observed sea level at Helsinki station and with temperature and salinity measured at monitoring stations in the Gulf of Finland and the Baltic Proper for the period 1 June–1 November 1996. The comparison was quite good for the sea level and the differences between the results of two model versions were insignificant for temperature and salinity stratification. In general, the results were better for the Baltic Proper than for the Gulf of Finland.

  1. Andrejev, O., Myrberg, K., Alenius, P. and Lundberg, P. Mean circulation and water exchange in Gulf of Finland – a study based on three dimensional modelling. Boreal Environ. Res., 2004, 9, 1–16.

  2. Andrejev, O., Myrberg, K. and Lundberg, P. A. Age and renewal time of water masses in a semi-enclosed basin – application to the Gulf of Finland. Tellus, 2004, 56A, 548–558.

  3. Inkala, A. and Myrberg, K. Comparison of hydrodynamical models of the Gulf of Finland in 1995: a case study. Environ. Modelling Software, 2002, 17, 237–250.

  4. Alenius, P., Myrberg, K. and Nekrasov, A. The physical oceanography of the Gulf of Finland: a review. Boreal Environ. Res., 1998, 3, 97–125.

  5. Mälkki, P. and Tamsalu, R. Physical features of the Baltic Sea. Finnish Marine Res., 1985, 252, 1–110.

  6. Vahtera, E., Laanemets, J., Pavelson, J., Huttunen, M. and Kononen, K. Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in the western Gulf of Finland, Baltic Sea. J. Marine Syst., 2005, 58, 67–82.

  7. Lisitzin, E. Sea-level changes. Elsevier Oceanography Series, Vol. 8, Elsevier, Amsterdam, 1974.

  8. Ekman, M. and Mäkinen, J. Mean sea surface topography in the Baltic sea and its transition area to the North Sea: a geodetic solution and comparisons with oceanographic models. J. Geophys. Res., 1996, 101, C5, 11993–11999.

  9. Suursaar, Ü., Kullas, T., Otsmann, M., Saaremäe, I., Kuik, J. and Merilain, M. Cyclone Gudrun in January 2005 and modelling its hydrodynamic consequences in the Estonian coastal waters. Boreal Environ. Res., 2006, 11, 143–159.

10. Akitomo, K., Awaji, T. and Imasato, N. Open-ocean deep convection in the Weddell Sea: two-dimensional numerical experiments with a nonhydrostatic model. Deep Sea Res. Part I: Oceanogr. Res. Papers, 1995, 42, 53–73.

11. Shaw, P.-T. and Chao, S.-Y. Effects of a baroclinic current on a sinking dense water plume from a submarine canyon and heton shedding. Deep Sea Res. Part I: Oceanogr. Res. Papers, 2003, 50, 357–370.

12. Shaw, P.-T. and Chao, S.-Y. A nonhydrostatic primitive-equation model for studying small-scale processes: an object-oriented approach. Continental Shelf Res., 2006, 26, 1416–1432.

13. Mahadevana, A. and Tandon, A. An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modelling, 2006, 14, 241–256.

14. MIKE 3 Flow Model: Hydrodynamic Module. Scientific Documentation. Danish Hydraulic Institute, 2008.

15. MIKE 3 Flow Model: Hydrostatic Module. Scientific Documentation. Danish Hydraulic Institute, 2008.

16. Guyondet, T., Koutitonsky, V. G. and Roy, S. Effects of water renewal estimates on the oyster aquaculture potential of an inshore area. J. Marine Syst., 2005, 58, 35–51.

17. Pietrzak, J., Jakobson, J. B., Burchard, H., Jacob Vested, H. and Petersen, O. A three-dimensional hydrostatic model for coastal and ocean modelling using a generalised topography following co-ordinate system. Ocean Modelling, 2002, 4, 173–205.

18. Lumborg, U. Modelling the deposition, erosion, and flux of cohesive sediment through Oresund. J. Marine Syst., 2005, 56, 179–193.

19. Edelvang, K., Kaas, H., Erichsen, A. C., Alvarez-Berastegui, D., Bundgaard, K. and Jorgen­sen, P. V. Numerical modelling of phytoplankton biomass in coastal waters. J. Marine Syst., 2005, 57, 13–29.

20. Lessin, G. and Raudsepp, U. Water quality assessment using integrated modeling and monitor­ing in Narva Bay, Gulf of Finland. Environ. Modelling Assessment, 2006, 11, 315–332.

21. Myrberg, K., Ryabchenko, V., Isaev, A., Vankevich, R., Andrejev, O., Bendtsen, J., Erich­sen, E., Funkqvist, L., Inkala, A., Neelov, I., Rasmus, K., Medina, M. R., Raud­sepp, U., Passenko, J., Söderkvist, J., Sokolov, A., Kuosa, H., Anderson, T. R., Lehmann, A. and Skogen, M. D. Validation of three-dimensional hydrodynamic models in the Gulf of Finland based on a statistical analysis of a six-model ensemble. J. Marine Syst., 2008. Forthcoming.

22. Sokolov, A., Andrejev, O., Wulff, F. and Rodriguez Medina, M. The data assimilation system for data analysis in the Baltic Sea. System Ecology Contributions, 1997.

23. Bergström, B. and Carlsson, B. River runoff to the Baltic Sea: 1950–1990. Ambio, 1994, 23, 280–287.
Back to Issue