eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering

Nutrition estimation of dialysis patients by on-line monitoring and kinetic modelling; pp. 177–188

Full article in PDF format | doi: 10.3176/eng.2008.2.07

Ivo Fridolin, Kai Lauri, Jana Jerotskaja, Merike Luman

The aim of this study was to estimate a nutritional parameter, normalized protein nitrogen appearance (nPNA), for haemodialysis (HD) patients by on-line monitoring with the optical dialysis adequacy monitor (DIAMON) prototype, by the modified direct dialysis quantifica­tion (mDDQ), and by the volume-variable single-pool urea kinetic modelling (VVSP UKM). Ten HD patients were monitored on-line by the DIAMON prototype during three consecutive haemo­dialysis sessions during one week. Blood samples were taken and the total dialysate collection (TDC) was performed during all dialyses. The nPNA values were estimated by DIAMON, mDDQ and VVSP UKM; nPNA was normalized by V/0.58 and by the measured dry body weight, efBW. Individual nPNA for each patient during a seven-day period was estimated using UV-absorbance measured on-line by the DIAMON prototype. The nPNA values (mean ± SD) in g/kg/day for the total material were: 1) 0.74 ± 0.12 from DIAMON (= 28), 0.90 ± 0.26 from mDDQ (N = 29) and 0.90 ± 0.23 from VVSP UKM (N = 30) normalized by V/0.58, and 2) 0.68 ± 0.10 from DIAMON (N = 28), 0.72 ± 0.19 from mDDQ (N = 29) and 0.80 ± 0.18 from VVSP UKM (N = 30) normalized by efBW. The optical device for monitoring the dialysis adequacy enables individual nPNA estimation for each patient using continuous, on-line UV-absorbance measurements. The results are comparable to the nPNA values obtained by the kinetic modelling. Still a question remains concerning the normalization of PNA.

  1. NKF K/DOQI Guidelines. PD_VA/index.htm

  2. Fouque, D., Vennegoor, M., Wee, P. T., Wanner, C., Basci, A., Canaud, B., Haage, P., Konner, K., Kooman, J., Martin-Malo, A. et al. EBPG guideline on nutrition. Nephrol. Dial. Transplant., 2007, 22 [Suppl 2], 45–87.

  3. Gotch, F. A. and Keen, M. L. Kinetic modeling in hemodialysis. In Clinical Dialysis (Nissenson, A. R. and Fine, R. N., eds.). McGraw-Hill, New York, 2005, 153–202.

  4. Garred, L. J. Dialysate-based kinetic modeling. Adv. Ren. Replace. Ther., 1995, 2, 305–318.

  5. Depner, T., Keshaviah, P., Ebben, J., Emerson, P., Collins, A., Jindal, K., Nissenson, A., Lazarus, J. and Pu, K. Multicenter clinical validation of an on-line monitor of dialysis adequacy. J. Am. Soc. Nephrol., 1996, 7, 464–471.

  6. Garred, L., Canaud, B., Argiles, A., Flavier, J. and Mion, C. Protein catabolic rate determina­tion from a single measurement of dialyzed urea. ASAIO J., 1995, 41, M804–809.

  7. Locatelli, F., Buoncristiani, U., Canaud, B., Khler, H., Petitclerc, T. and Zucchelli, P. Haemo­dialysis with on-line monitoring equipment: tools or toys? Nephrol. Dial. Transplant., 2005, 20, 22–33.

  8. Vasilevski, A. M. and Kornilov, N. V. Monitoring the dialysis liquid during hemodialysis from the extinction spectra in the UV region. J. Opt. Technol., 1999, 66, 692.

  9. Fridolin, I., Magnusson, M. and Lindberg, L.-G. On-line monitoring of solutes in dialysate using absorption of ultraviolet radiation: technique description. Int. J. Artif. Organs, 2002, 25, 748–761.

10. Jensen, P., Bak, J., Ladefoged, S. and Andersson-Engels, S. Determination of urea, glucose, and phosphate in dialysate with Fourier transform infrared spectroscopy. Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2004, 60, 899–905.

11. Olesberg, J. T., Arnold, M. A. and Flanigan, M. J. Online measurement of urea concentration in spent dialysate during hemodialysis. Clin. Chem., 2004, 50, 175–181.

12. Uhlin, F., Fridolin, I., Lindberg, L.-G. and Magnusson, M. Estimation of delivered dialysis dose by on-line monitoring of the UV-absorbance in the spent dialysate. Am. J. Kidney Dis., 2003, 41, 1026–1036.

13. Uhlin, F., Fridolin, I., Lindberg, L. G. and Magnusson, M. Estimating total urea removal and protein catabolic rate by monitoring UV absorbance in spent dialysate. Nephrol. Dial. Transplant., 2005, 20, 2458–2464.

14. Fridolin, I., Jerotskaja, J., Lauri, K., Scherbakov, A. and Luman, M. Optical dialysis adequacy sensor: contribution of chromophores to the ultra violet absorbance in the spent dialysate. In Proc. 11-th Mediterranean Conference of Medical and Biological Engineering and Computing, MEDICON 2007. Ljubljana, Slovenia, 2007.

15. Suri, R. and Blake, P. G. Adequacy of hemodialysis. In Replacement of Renal Function by Dialysis (Hörl, W. H., Koch, K. M., Lindsay, R. M., Ronco, C. and Winchester, J. F., eds.). Kluver, Dordrecht, 2004, 153–202.

16. Canaud, B., Leblanc, M., Garred, L. J., Bosc, J. Y., Argiles, A. and Mion, C. Protein catabolic rate over lean body mass ratio: a more rational approach to normalize the protein catabolic rate in dialysis patients. Am. J. Kidney Dis., 1997, 30, 672–679.

17. Daugirdas, J. T. and Depner, T. A. A nomogram approach to hemodialysis urea modeling. Am. J. Kidney Dis., 1994, 23, 33–40.

18. Fridolin, I. and Lindberg, L.-G. On-line monitoring of solutes in dialysate using absorption of ultraviolet radiation – wavelength dependence. Med. Biol. Eng. Comput., 2003, 41, 263–270.

19. Raj, D., Tobe, S., Saiphoo, C. and Manuel, M. Quantitating dialysis using two dialysate samples: a simple, practical and accurate approach for evaluating urea kinetics. Int. J. Artif. Organs, 1997, 20, 422–427.

20. Gotch, F., Sargent, J., Keen, M. and Lee, M. Individualized, quantified dialysis therapy of uremia. Proc. Clin. Dial. Transplant Forum, 1974, 4, 27–35.

21. Aebischer, P., Schorderet, D., Juillerat, A., Wauters, J. P. and Fellay, G. Comparison of urea kinetics and direct dialysis quantification in hemodialysis patients. ASAIO Trans., 1985, 31, 338–342.

22. Depner, T. and Daugirdas, J. Equations for normalized protein catabolic rate based on two-point modeling of hemodialysis urea kinetics. J. Am. Soc. Nephrol., 1996, 7, 780–785.

Back to Issue