eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering

A conceptual design method for the general electric vehicle; pp. 3–16

Full article in PDF format | doi: 10.3176/eng.2008.1.01

Raivo Sell, Mart Tamre, Madis Lehtla, Argo Rosin

The paper discusses conceptual design of mechatronic systems considering a mobile electrical vehicle platform as an application example. A set of design templates are developed and organized into libraries for the use in early stages of the system design. The advantages of retaining usability of component libraries, allowing verification of design alternatives on the conceptual level are demonstrated.

  1. Hubka, V. and Eder, W. Design Science: Introduction to the Needs, Scope and Organization of Engineering Design Knowledge. Springer, London, 1996.

  2. Pahl, G. and Beitz, W. Engineering Design – A Systematic Approach. Springer, Berlin, 1996.

  3. Ullman, D. G. Mechanical Design Process. McGraw–Hill, New York, 2002.

  4. French, M. Conceptual Design for Engineers. Springer, London, 1999.

  5. Design Methodology for Mechatronic System – VDI 2206. Beuth Verlag GmbH, DI, Düssel­dorf, 2004.

  6. Gurd, A. Using UMLTM 2.0 to Solve Systems Engineering Problems. Telelogic, 2003.

  7. Kukkala, P., Riihimäki, J., Hännikäinen, M., Hämäläinen, T. D. and Kronlöf, K. UML 2.0 Pro­file for Embedded System Design. In Proc. Design, Automation and Test in Europe Conference. Munich, 2005, 710–715.

  8. Gawthrop, P. Metamodelling: for Bond Graphs and Dynamic Systems. Prentice Hall, London, 1996.

  9. Desel, J. and Juhas, G. What is a Petri net? – Informal answers for the informed reader. Lecture Notes in Computer Science, Springer, Berlin/Heidelberg, 2001, 2128, 1–25.

10. Davoren, J. M. and Nerode, A. Logics for hybrid systems. Proc. IEEE, 2000, 88, 985–1010.

11. Rzevski, G. On conceptual design of intelligent mechatronic system. Mechatronics, 2003, 13, 1029–1044.

12. Seo, K., Fan, Z., Hu, J., Goodman, E. D. and Rosenberg, R. C. Toward a unified and automated design methodology for multi-domain dynamic systems using bond graphs and genetic programming. Mechatronics, 2003, 13, 851–885.

13. Granda, J. J. The role of bond graph modeling and simulation in mechatronics systems. An integrated software tool: CAMP-G, MATLAB–SIMULINK. Mechatronics, 2002, 12,1271–1295.

14. AMESim: Modeling & simulation environment for systems engineering. http://www.

15. Dymola – dynamic modeling laboratory with Modelica (Dynasim AB). http://www.

16. 20-sim, the dynamic modeling and simulation package for iconic diagram, bond graph, block diagram and equation models.

17. System modeling language (SysML) specification. Version 1.0, Draft. OMG document ad/2006-03-01, 2006.

18. Sell, R. and Tamre, M. Integration of V-model and SysML for advanced mechatronics system design. In Proc. Research & Education on Mechatronics Conference REM05. Annecy, 2005, 276–280.

19. Systems Engineering Handbook. INCOSE-TP-2003-016-02, version 2a. Technical Board of International Council on Systems Engineering (INCOSE), 2004.

20. Karnopp, D. C., Margolis, D. L. and Rosenberg, R. C. System Dynamics – Modeling and Simulation of Mechatronic Systems. J. Wiley, New Jersey, 2006.

21. Popa, I. S., Popescu, M. O. and Popescu, C. Energetic macroscopic representation applied to an electrical urban transport system. In The Annals of “Dunarea de Jos”, University Of Galati Fascicle, 2002, III, 34–39.

22. Lehtla, M. Microprocessor Control Systems of Light Rail Vehicle Traction Drives. Tallinn University of Technology Press, Tallinn, 2006.
Back to Issue