eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering

The variation of the velocity and turbulent kinetic energy field in the wave in the vicinity of the breaking point; pp. 42–64

Full article in PDF format | doi: 10.3176/eng.2008.1.04

Toomas Liiv, Priidik Lagemaa

The paper describes experimental investigation of the flow and turbulent kinetic energy under the weakly plunging breaking wave in the outer surf zone. Experiments for the present study were carried out on a surf zone model with a constant slope of 1 : 17 in the vicinity of the wave breaking point. Experimental results show that the kinetic energy is largest under the wave crest and decreases rapidly after the wave crest has passed. Visualization of the flow proved that the velocity profile during backflow phases resembles the steady open channel flow, but during the onflow phases the velocity profile is unlike any other flow situation.

  1. Svendsen, I. A. and Hansen, J. B. Determination up to breaking of periodic waves on a beach. In Proc. 16th Coastal Engineering Conference. Hamburg, 1976, 477–496.

  2. Chang, K.-A. and Liu, P. L.-F. Experimental investigation of turbulence generated by breaking waves in water of intermediate depth. Phys. Fluids, 1999, 11, 3339–3400.

  3. Stieve, M. J. F. Velocity and pressure field of spilling breaker. In Proc. 17th Coastal Engineer­ing Conference. Sydney, 1980, 574–566.

  4. Nadaoka, K. and Kondoh, T. Laboratory measurements of velocity field in the surf zone by LDV. Coastal Eng. Japan, 1982, 25, 125–146.

  5. Ting, F. C. K. and Kirby, J. T. Observation of undertow and turbulence in a laboratory surf zone. Coastal Eng., 1994, 24, 51–80.

  6. Ting, F. C. K. and Kirby, J. T. Dynamics of surf zone turbulence in a strong plunging breaker. Coastal Eng., 1995, 24, 177–204.

  7. Ting, F. C. K. and Kirby, J. T. Dynamics of surf-zone turbulence in spilling breaker. Coastal Eng., 1996, 27, 131–160.

  8. Haydon, T. R., Hann, D. B., Davies, P., Greated, C. A. and Barnes, T. C. D. Turbulence structure in surf zone. In Proc. 25th International Conference on Coastal Engineering. Orlando, FL, 1996, 214–220.

  9. Chang, K.-A. and Liu, P. L.-F. Measurements of breaking waves using particle image veloci­metry. In Proc. 25th International Conference on Coastal Engineering. Orlando, FL, 1996, 527–537.

10. Deigaard, R., Mikkelsen, M. B. and Fredsoe, J. Measurements of the bed shear stress in the surf zone. Progress Report, ISVA, Techn. Univ. Denmark, Lyngby, 1991, 73, 484–497.

11. Cox, D. T., Kobayashi, N. and Okayasu, A. Bottom shear stress on the surf zone. J. Geophys. Res., 1996, 101, 14337–14348.

12. Feddersen, F. and Trowbridge, J. H. The effect of wave breaking on surf-zone turbulence and alongshore currents: a modelling study. J. Phys. Oceanogr., 2005, 35, 2187–2202.

13. Trowbridge, J. H. and Agrawal, Y. C. Glimpses of wave boundary layer. J. Geophys. Res., 1995, 100, 20729–20743.

14. Feddersen, F. and Williams, A. J. III. A direct estimation of the Reynolds stress vertical structure in the near shore. J. Atmos. Ocean. Techn., 2007, 24, 102–116.

15. Bryan, K. R., Black, K. P. and Gorman, R. M. Spectral estimates of dissipation rate within and near the surf zone. J. Phys. Oceanogr., 2003, 33, 979–993.

16. Feddersen, F., Gallagher, E. L., Guza, R. T. and Elgar, S. The drag coefficient, bottom rough­ness and wave-breaking in the nearshore. Coastal Eng., 2003, 48, 189–195.

17. Fredsoe, J. and Deigaard, R. Mechanics of Coastal Sediment Transport. World Scientific, Singapore, 1992.

18. Songdong Shao. Simulation of breaking wave by SPH method coupled with model. J. Hydr. Res., 2006, 44, 338–349.

19. Lin, P. and Liu, P. L. F. Turbulence transport, vorticity dynamics and solute mixing under plunging breaking waves in surf zone. J. Geophys. Res., 1998, 103, 15677–15694.

20. Lin, P. and Liu, P. L. F. A numerical study of breaking waves in surf zone. J. Fluid Mech., 1998, 359, 239–264.

21. Rodi, W. Turbulence Models and Their Application in Hydraulics. IAHR, Delft, 1980.

22. Nadaoka, K., Hino, M. and Koyano, Y. Structure of turbulent flow under breaking waves in the surf zone. J. Fluid Mech., 1989, 204, 359–387.

23. Pedersen, C., Deigaard, R. and Sutherland, J. Turbulence measurements under broken waves. Progress Report, ISVA, Techn. Univ. Denmark, Lyngby, 1993, 74, 81–97.

24. Petti, M. and Longo, S. Turbulence experiments in swash zone. Coastal Eng., 2001, 43, 1–24.

25. Ting, F. C. K. Laboratory study of wave and turbulence velocities in a broad-banded irregular wave surf zone. Coastal Eng., 2001, 43, 183–208.

26. Liiv, T. An experimental investigation of the breaking wave characteristics in coastal regions. In Proc. International Conference on Coastal and Port Engineering in Developing Countries COPEDEC IV. Rio de Janeiro, 1995, vol. 3, 2334–2343.

27. Liiv, T. Investigation of turbulence in a plunging breaker wave. Proc. Estonian Acad. Sci. Eng., 2001, 7, 58–78.

28. Stieve, M. J. F. and Wind, H. G. A study of radiation stress and set-up in the nearshore region. Coastal Eng., 1982, 6, 1–25.

29. Svendsen, I. A. Analysis of surf zone turbulence. J. Geophys. Res., 1987, 92, 5115–5124.

30. Sakai, T., Mizutani, T., Tanaka, H. and Tada, Y. Vortex formation in plunging breakers.
In Proc. International Conference on Coastal Engineering. Taipei, Taiwan, 1986, vol. 1,

31. Schäffer, H. A., Madsen, P. A. and Deigaard, R. A Boussinesq model for waves breaking in shallow water. Coastal Eng., 1993, 20, 185–202.

32. Takikawa, K., Yamada, F. and Matsumoto, K. Internal characteristics and numerical analysis of plunging breaker on a slope. Coastal Eng., 1997, 31, 143–161.

33. Christensen, E. D. and Deigaard, R. Large eddy simulation in breaking waves. Coastal Eng., 2001, 42, 53–86.

34. Aitsam, A., Daniel, E. and Liiv, U. Investigation of the velocity distribution and shear stresses in decelerated pipe flow. Proc. Estonian Acad. Sci. Phys. Math., 1990, 39, 290–295.
Back to Issue