eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering

Manufacturability and limitations in incremental sheet forming; 129–139

Full article in PDF format

Meelis Pohlak, Jüri Majak, Rein Küttner

In the actual incremental sheet forming process two kinds of risks can be outlined: material failure and tool failure. From the point of view of safe manufacturing, both risks should be minimized. The aim of the current study is to predict material and tool failure. An experimental, numerical and theoretical study is performed in order to determine the material formability and the forming load components. Incremental sheet forming strategies for determining the forming limit diagram are pointed out.
  1. Kim, T. J. and Yang, D. Y. Improvement of formability for the incremental sheet forming process. Int. J. Mech. Sci., 2000, 42, 1271–1286.

  2. Iseki, H. An approximate deformation analysis and FEM analysis for the incremental bulging of sheet metal using a spherical roller. J. Mater. Proc. Technol., 2001, 111, 150–154.


  3. Shim, M. S. and Park, J. J. The formability of aluminum sheet in incremental forming. J. Mater. Proc. Technol., 2001, 113, 654–658.


  4. Filice, L., Fratini, L. and Micari, F. Analysis of material formability in incremental forming. In Annals of College International pour la Recherche en Productique, 2002, 51, 199–202.

  5. Ceretti, E., Giardini, C. and Attanasio, A. Experimental and simulative results in sheet incremental forming on CNC machines. J. Mater. Proc. Technol., 2004, 152, 176–184.


  6. Jadhav, S. Basic Investigations of the Incremental Sheet Metal Forming Process on a CNC Milling Machine. Doctoral thesis, Universität Dortmund, Dortmund, 2004.

  7. Pohlak, M., Küttner, R. and Majak, J. Simulation of incremental forming processes of sheet metal. In Proc. III International Conference on Advances in Production Engineering. Warsaw, 2004, Part II, 133–140.

  8. Pohlak, M., Küttner, R. and Majak, J. Modelling and optimal design of the incremental forming process. Proc. Estonian Acad. Sci. Eng., 2004, 10, 261–269.

  9. Pohlak, M., Majak, J. and Küttner, R. Manufacturability issues in incremental sheet forming. In Proc. 5th International DAAAM Baltic Conference. Tallinn, 2006, 157–162.

10. LS-DYNA Theoretical Manual. Livermore Software Technology Corporation, Livermore, 1998.

11. Barlat, F. and Lian, J. Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions. Int. J. Plasticity, 1989, 5, 51–66.


12. Sing, W. M. and Rao, K. P. Role of strain-hardening laws in the prediction of forming limit curves. J. Mater. Proc. Technol., 1997, 63, 105–110.


13. Kim, Y. H. and Park, J. J. Effect of process parameters on formability in incremental forming of sheet metal. J. Mater. Proc. Technol., 2002, 130–131, 42–46.


14. Kim, Y. H. and Park, J. J. Fundamental studies on the incremental sheet metal forming technique. J. Mater. Proc. Technol., 2003, 140, 447–453.


15. Jeswiet, J., Young, D. and Ham, M. Non-traditional forming limit diagrams for incremental forming. Adv. Mater. Res., 2005, 6–8, 409–416.

16. Chen, C. C., Oh, S. I. and Kobayashi, S. Ductile fracture in axisymmetric extrusion and drawing. Part 2. Workability in extrusion and drawing. ASME Trans., J. Eng. Ind., 1979, 101, 36–44.

17. Pohlak, M., Küttner, R. and Majak, J. Modelling and optimal design of sheet metal RP&M processes. Rapid Prot. J., 2005, 11, 304–311.

18. Maki, T. Dieless NC Forming. In International Seminar on Novel Sheet Metal Forming Technologies. Jyväskylä, 2006.

Back to Issue