eesti teaduste
akadeemia kirjastus
Estonian Journal of Engineering

Smart sensor systems using impedance spectroscopy; 455–478

Full article in PDF format

Hans-Rolf Tränkler, Olfa Kanoun, Mart Min, Marek Rist


Extracting relevant information from impedance spectra is a big challenge if we consider different mechanisms, including cable and contacting effects, material properties and system instability. A particularly important prerequisite is that these effects depend differently on the frequency and that some measures can be taken to eliminate effects of irrelevant mechanisms. The common way in signal processing is to model the impedance spectrum by means of equivalent circuits and to extract the quantity of interest using optimization techniques. The more effects and mechanisms are represented in an impedance spectrum, the more unknown parameters are needed for accurate modelling. The parameter extraction process becomes thereby difficult to solve and needs a lot of trials and a priori knowledge. It is therefore important that mechanisms with minor influence are eliminated or neglected. Other possibilities for signal processing provide mathematical data fusion methods. Statistical methods like principal component analysis can be used for extracting specific information from the measured data. The paper considers different applications (electrochemical, biomedical, moisture analysis, battery diagnosing) of electrical impedance spectroscopy.

1. Barsoukov, E. and MacDonald, J. R. Impedance Spectroscopy. J. Wiley, New York, 2005.


   2. Kanoun, O., Tetyuev, A. and Tränkler, H.-R. Bodenfeuchtemessung mittels Impedanz­spektro­skopie. Techn. Messen, 2004, 71, 475–485.

  3. Tetyuev, A. and Kanoun, O. Messverfahren zur Bodenfeuchtemessung mittels Impedanz­spektroskopie mit Bodenarterkennung für In-Situ Anwendungen. Techn. Messen, 2006, 73, 404–412.

  4. Agrawal, P., Orazem, M. E. and Garcia-Rubio, L. H. Application of measurement models to impedance spectroscopy, III. Evaluation of consistency with the Kramers–Kronig Rela­tions. J. Electrochem. Soc., 1995, 142, 4159–4168.

  5. Agrawal, P. and Orazem, M. E. Measurement models for electrochemical impedance spectro­scopy. J. Electrochem. Soc., 1992, 139, 1917–1927.

  6. Tröltzsch, U. Modellbasierte Zustandsdiagnose von Gerätebatterien. Dr. Ing. Dissertation, Universität der Bundeswehr München, Neubiberg, 2005.

  7. Boukamp, B. A. Impedance spectroscopy, strength and limitations. Techn. Messen, 2004, 71, 454–459.

  8. Kanoun, O., Tröltzsch, U. and Tränkler, H.-R. Benefits of evolutionary strategy in modeling of impedance spectra. Electrochim. Acta, 2006, 51, 1453–1461.

  9. Tetyuev, A., Kanoun, O. and Tränkler, H.-R. Soil type characterization for moisture measure­ment by impedance spectroscopy. In Proc. IEEE Instrumentation and Measurement Technology Conference IMTC 2006. Sorrento, 2006, 735–740.

10. Webster, J. G. (ed.). Design of Cardiac Pacemakers. IEEE Press, Piscataway, NJ, USA, 1995.

11. Min, M., Parve, T. and Kink, A. Thoracic bioimpedance as a basis for pacing control. In Annals of the New York Academy of Sciences. Electrical Bio-Impedance Methods: Application to Medicine and Biotechnology. New York, 1999, 873, 155–166.

12. Min, M., Kink, A., Parve, T. and Rätsep, I. Bioimpedance based control of rate limit in artificial cardiac pacing. In Proc. IASTED International Conference on Biomedical Engineering BioMED 2005. Innsbruck, 2005. ACTA Press, Calgary, Alberta, Canada, 2005, 697–703.

13. Kink, A., Salo, R. W., Min, M., Parve, T. and Rätsep, I. Intracardiac electrical bioimpedance as a basis for controlling of pacing rate limits. In Proc. IEEE Engineering in Medicine and Biology Conference EMBC2006. New York, 2006. IEEE Press, 2006, 6308–6311.

14. Min, M., Kink, A. and Parve, T. Rate Adaptive Pacemaker. US Patent 6, 885, 892. Publ. April 26, 2005.

15. Min, M., Kink, A. and Parve, T. Rate Adaptive Pacemaker Using Impedance Measurements and Stroke Volume Calculations. US Patent 6, 975, 903, Dec. 13, 2005.

16. Ericsson, A. B. Cardioplegia and Cardiac Function Evaluated by Left Ventricular P-V Rela­tions. PhD Thesis, Karolinska Institutet, Stockholm, 2000.

17. Söderqvist, E. Left Ventricular Volumetry Technique Applied to a Pressure Guide Wire. Licentiate Thesis, Royal Institute of Technology, Stockholm, 2002.

18. Denslow, S. Relationship between PVA and myocardial oxygen consumption can be derived from thermodynamics. Am. J. Physiol. Heart Circ. Physiol., 1996, 270, H730–H740.

19. Salo, R. W., O’Donoghue, S. and Platia, E. V. The use of intracardiac impedance-based indicators to optimize pacing rate. In Clinical Cardiac Pacing (Ellenbogen, K. A., Kay, G. N. and Wilkoff, B. L., eds.). W. B. Saunders Co., Philadelphia, PA, 1995, 234–249.

20. Salo, R. W. Application of impedance volume measurement to implantable devices. Int. J. Bioelectromagn., 2003, 5, 57–60.

21. Kink, A., Min, M., Parve, T. and Rätsep, I. Device and Method for Monitoring of Cardiac Pacing Rate. US Patent Application 11/847430, applied August 30, 2007.

22. Flaschke, T. Modellierung zur Material-unabhängigen Bodenfeuchtemessung mit Methoden der Impedanz- Sensorik Fortschritt-Berichte. VDI, Reihe 8, Nr. 889, VDI Verlag, 2001.

23. Kanoun, O. Modeling of Impedance Spectra for Moisture Measurement in Crude Sand. In Proc. IEEE International Conference on Systems, Signals & Devices SSD'05. Sousse, Tunisia, 2005, 1664–1672.

24. Tröltzsch, U., Kanoun, O. and Tränkler, H.-R. Characterizing aging effects of lithium ion batteries by impedance spectroscopy. Electrochim. Acta, 2006, 51, 1664–1672.

25. Buchmann, I. Batteries in a Portable World.Cadex Electronics Inc., Richmond, Canada, 2001.

26. Tietze, U. and Schenk, C. Electronic Circuits Design and Applications. Springer-Verlag, Berlin, 1991.

27. Impedance Measurement Handbook. Agilent Technologies, Palo Alto, USA, 2006.


Back to Issue