1. Besterci, M. and Ivan, J. Failure mechanism of dispersion strengthened Al-Al4C3 systems. J. Mater. Sci. Lett., 1996, 15, 2071–2074.
2. Besterci, M. and Ivan, J. The mechanism of the failure of the dispersion-strengthened Cu–Al2O3 system. J. Mater. Sci. Lett., 1998, 17, 773–776.
doi:10.1023/A:1006639700906
3. Besterci, M., Ivan, J., Kováč, L., Weissgaerber, T. and Sauer, C. Strain and fracture mechanism of Cu–TiC. Mater. Lett., 1999, 38, 270–274.
doi:10.1016/S0167-577X(98)00171-2
4. Besterci, M., Ivan, J., Kováč, L., Weissgaerber, T. and Sauer, C. A model of deformation mechanism of the system Cu-TiC. Kovové Mater., 1998, 36, 239–244.
5. Besterci, M., Ivan, J. and Kováč, L. Influence of volume fraction of Al2O3 particles on fracture of the Cu-Al2O3 system. Kovové Mater., 2000, 38, 21–28.
6. Besterci, M., Ivan, J. and Kováč, L. Influence of Al2O3 particles volume fraction on fracture mechanism in the Cu–Al2O3 system. Mater. Lett., 2000, 46, 181–184.
doi:10.1016/S0167-577X(00)00164-6
7. Besterci, M., Ivan, J., Velgosová, O. and Pešek, L. Damage mechanism of Al-Al4C3 system with high volume fraction of secondary phase. Kovové Mater., 2001, 39, 361–367.
8. Besterci, M., Velgosová, O., Ivan, J., Hvizdoš, P. and Kohútek, I. Influence of volume fraction on fracture mechanism of Al-Al4C3 system studied by “in-situ tensile test in SEM”. Kovové Mater, 2008, 46, 139–143.
9. Mocellin, A., Fougerest, F. and Gobin, P. F. J. A study of damage under tensile loading in a new Al-Si-Fe alloy processed by the Osprey route. Mater. Sci., 1993, 28, 4855–4861.
doi:10.1007/BF00361147
10. Velísek, R. and Ivan, J. Mechanism of “in-situ deformation in SEM” Al-Si system. Kovové Mater., 1994, 32, 531–539.
11. Jangg, G., Šlesár, M., Besterci, M., Ďurišin, J. and Schröder, K. Influence of heat treatment during manufacturing of Al-Al4C3 materials on microstructure and properties. Powder Metallurgy Int., 1989, 5, 25–30.
12. Jangg, G., Zbiral, J. and Wu, S. Einfluß des Mahlens und der Wärmebehandlung bei Strangpreßprodukten aus dispersionsverfestigten Al-Al4C3 Werkstoffen. Aluminium, 1992, 68, 238–246.
13. Broutman, L. V. and Krock, R. H. Analysis of deformation of Al-Si system. Compos. Mater., 1974, 5, 27–38.
14. Jangg, G., Vasgura, H., Schröder, K., Šlesár, M. and Besterci, M. In Proc. Int. Conference on Powder Metallurgy PM 86. Düsseldorf, 1986, 989–999.
15. Korb, G., Jangg, G. and Kutner, F. Dispersionsverfestigte Al-Al4C3 Werkstoffe. Draht, 1979, 30, 318–327.
16. Šalunov, J., Šlesár, M., Besterci, M., Oppenheim, H. and Jangg, G. Einfluss der Herstellungsbedingungen auf die Eigenschaften von dispersionsverfestigten Al-Al4C3 Werkstoffen. Metall, 1986, 6, 601–609.
17. Besterci, M., Sülleiová, K. and Kvačkaj, T. Fracture micromechanisms of copper nanomaterials prepared by ECAP. Kovové Mater., 2008,46, 309–311.
18. Lukáč, P. and Trojanová, Z. Deformation and damping behaviours of microcrystalline Mg reinforced with ceramic nanoparticles. Kovové Mater., 2006, 44, 243–249.
19. Valiev, R. Z. Approach to nanostructured solids through the studies of submicron grained polycrystals. Nanostruct. Mater., 1995, 6, 73–85.
doi:10.1016/0965-9773(95)00031-3
20. Valiev, R. Z. In Proc. Metallic Materials with High Structural Efficiency. NATO Science Series, Kiev (Senkov, O. N., Miracle, D. B. and Firstov, S. A., eds.). IOS Press, Amsterdam and Kluwer Acad. Publ., Dordrecht, 2003, 79–89.
21. Zhu, Y. T., Huang, J. Y., Gubicza, J., Ungár, T., Wang, Y. M., Ma, E. and Valiev, R. Z. Nanostructures in Ti processed by severe plastic deformation. J. Mater. Res., 2002, 18, 1908–1917.
doi:10.1557/JMR.2003.0267
22. Valiev, R. Z. and Alexandrov, I. V. Nanostrukturnye Materialy Poluchennye Intensivnoj Plasticheskoj Deformaciej. Logos, Moscow, 2000 (in Russian).
23. Kozlov, E. V. and Koneva, M. V. Features of work hardening of polycrystals with nanograins. Mater. Sci. Forum, 2008, 35, 584–586.